SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Properties of Geometric Figures, SM-Bank 026

Determine the value of \(a^{\circ}\), \(b^{\circ}\), and \(c^{\circ}\), giving reasons for your answer.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{All radii are equal (see diagram).}\)

\(a^{\circ} = 70^{\circ}\ \ \text{(angles opposite equal sides in isosceles triangle)} \)

\(b^{\circ} = 2 \times 70 = 140^{\circ}\ \ \text{(external angle = sum of interior opposite angles)} \)

\(140^{\circ} + 2 \times c^{\circ}\) \(=180^{\circ}\ \ \text{(angle sum of isosceles triangle)} \)  
\(2c^{\circ}\) \(=180-40\)  
\(c^{\circ}\) \(=\dfrac{40}{2} = 20^{\circ} \)  
Show Worked Solution

\(\text{All radii are equal (see diagram).}\)

\(a^{\circ} = 70^{\circ}\ \ \text{(angles opposite equal sides in isosceles triangle)} \)

\(b^{\circ} = 2 \times 70 = 140^{\circ}\ \ \text{(external angle = sum of interior opposite angles)} \)

\(140^{\circ} + 2 \times c^{\circ}\) \(=180^{\circ}\ \ \text{(angle sum of isosceles triangle)} \)  
\(2c^{\circ}\) \(=180-40\)  
\(c^{\circ}\) \(=\dfrac{40}{2} = 20^{\circ} \)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-20-Exterior angles

Properties of Geometric Figures, SM-Bank 025

  1. Determine the value of \(a^{\circ}\), giving reasons for your answer.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Determine the value of \(b^{\circ}\), giving reasons for your answer.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    


 

\(\text{All radii are equal (see diagram).}\)

\(\text{Isosceles triangle}\ \ \Rightarrow\ \ \text{angles opposite equal sides are equal}\)

\(a^{\circ} = 180-(2 \times 60)=60^{\circ}\ \ \text{(angle sum of triangle)} \)
 

b.   \(c^{\circ} = 180-60=120^{\circ}\ \ \text{(180° in straight line)} \)

\(120^{\circ}\) \(=85\ \ \text{(external angle = sum of interior opposite angles)} \)  
\(a^{\circ}\) \(= \dfrac{85}{2}\)  
  \(=42.5^{\circ}\)  
Show Worked Solution

a.    


 

\(\text{All radii are equal (see diagram).}\)

\(\text{Isosceles triangle}\ \ \Rightarrow\ \ \text{angles opposite equal sides are equal}\)

\(a^{\circ} = 180-(2 \times 60)=60^{\circ}\ \ \text{(angle sum of triangle)} \)
 

b.   \(c^{\circ} = 180-60=120^{\circ}\ \ \text{(180° in straight line)} \)

\(120^{\circ}\) \(=85\ \ \text{(external angle = sum of interior opposite angles)} \)  
\(a^{\circ}\) \(= \dfrac{85}{2}\)  
  \(=42.5^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-20-Exterior angles

Properties of Geometric Figures, SM-Bank 024

An isosceles triangle is pictured below.
 

Determine the value of \(a^{\circ}\), giving reasons for your answer.   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(b^{\circ} = 180-95=85^{\circ}\ \ \text{(180° in straight line)} \)

\(\text{Isosceles triangle}\ \ \Rightarrow\ \ \text{angles opposite equal sides are equal}\)

\(2a^{\circ}\) \(=85\ \ \text{(external angle = sum of interior opposite angles)} \)  
\(a^{\circ}\) \(= \dfrac{85}{2}\)  
  \(=42.5^{\circ}\)  
Show Worked Solution

\(b^{\circ} = 180-95=85^{\circ}\ \ \text{(180° in straight line)} \)

\(\text{Isosceles triangle}\ \ \Rightarrow\ \ \text{angles opposite equal sides are equal}\)

\(2a^{\circ}\) \(=85\ \ \text{(external angle = sum of interior opposite angles)} \)  
\(a^{\circ}\) \(= \dfrac{85}{2}\)  
  \(=42.5^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-20-Exterior angles

Properties of Geometric Figures, SM-Bank 023

Find the value of \(a^{\circ}\), giving reasons for your answer.   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
\(a^{\circ}+67^{\circ}\) \(=108\ \ \text{(external angle = sum of interior opposite angles)} \)  
\(a^{\circ}\) \(= 108-67\)  
  \(=41^{\circ}\)  
Show Worked Solution
\(a^{\circ}+67^{\circ}\) \(=108\ \ \text{(external angle = sum of interior opposite angles)} \)  
\(a^{\circ}\) \(= 108-67\)  
  \(=41^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-20-Exterior angles

Properties of Geometric Figures, SM-Bank 022

The diagram below shows an isosceles triangle.
 

Find the value of \(x^{\circ}\), giving reasons for your answer.   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(2y^{\circ}\) \(=180-32\ \ \text{(angles opposite equal sides in isosceles triangle)} \)  
\(y^{\circ}\) \(=\dfrac{148}{2}\)  
  \(=74^{\circ}\)  
\(x^{\circ}\) \(=32+74\ \ \text{(external angle = sum of interior opposite angles)} \)  
  \(=106^{\circ}\)  
Show Worked Solution

\(2y^{\circ}\) \(=180-32\ \ \text{(angles opposite equal sides in isosceles triangle)} \)  
\(y^{\circ}\) \(=\dfrac{148}{2}\)  
  \(=74^{\circ}\)  
\(x^{\circ}\) \(=32+74\ \ \text{(external angle = sum of interior opposite angles)} \)  
  \(=106^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-20-Exterior angles

Properties of Geometric Figures, SM-Bank 021

 

Find the value of \(x^{\circ}\), giving reasons for your answer.   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(2y^{\circ}\) \(=180-78\ \ \text{(angles opposite equal sides in isosceles triangle)} \)  
\(y^{\circ}\) \(=\dfrac{102}{2}\)  
  \(=51^{\circ}\)  
\(x^{\circ}\) \(=78+51\ \ \text{(external angle = sum of interior opposite angles)} \)  
  \(=129^{\circ}\)  
Show Worked Solution

\(2y^{\circ}\) \(=180-78\ \ \text{(angles opposite equal sides in isosceles triangle)} \)  
\(y^{\circ}\) \(=\dfrac{102}{2}\)  
  \(=51^{\circ}\)  
\(x^{\circ}\) \(=78+51\ \ \text{(external angle = sum of interior opposite angles)} \)  
  \(=129^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-20-Exterior angles

Properties of Geometric Figures, SM-Bank 020

 

Find the value of \(x^{\circ}\), giving reasons for your answer.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(26^{\circ}\)

Show Worked Solution
\(x^{\circ}+54^{\circ}\) \(=80\ \ \text{(external angle = sum of interior opposite angles)} \)  
\(x^{\circ}\) \(=80-54\)  
  \(=26^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-20-Exterior angles

Properties of Geometric Figures, SM-Bank 019

 

Find the value of \(x^{\circ}\), giving reasons for your answer.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(115^{\circ}\)

Show Worked Solution
\(x^{\circ}\) \(=57+58\ \ \text{(external angle = sum of interior opposite angles)} \)  
  \(=115^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-20-Exterior angles

Properties of Geometrical Figures, SM-Bank 018

The diagram below shows a right-angled triangle.
 

Determine the value of \(a^{\circ}\), giving reasons for your answer.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(138^{\circ}\)

Show Worked Solution

\(\text{Right angle}\ = 90^{\circ} \)

\(a^{\circ}\) \(=48+90\ \ \text{(external angle = sum of interior opposite angles)} \)  
  \(=138^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-20-Exterior angles

Properties of Geometric Figures, SM-Bank 008

What is the size of the angle marked \(x^{\circ}\) in this diagram?   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(110^{\circ}\)

Show Worked Solution

\(\text{Interior angle}\ = 180-120 = 60^{\circ}\ \ \text{(180° in straight line)}\)

\(x^{\circ} = 60+50 = 110^{\circ}\ \ \text{(exterior angle = sum of interior opposites)}\)

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-20-Exterior angles

Copyright © 2014–2025 SmarterEd.com.au · Log in