SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Solving Problems, SM-Bank 017

In the diagram below, find the value of \(x^{\circ}\), giving reasons for your answer.   (3 marks)
  

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{Full interior angle}\ = 360-275=85^{\circ} \ \ \text{(360° about a point)} \)
 

\(\text{Since cointerior angles sum to 180°,}\)

\(\Rightarrow \text{interior angle (1)}\ = 180-125=55^{\circ} \)

\(\text{Since angles about a point sum to 360°,}\)

\(\Rightarrow \text{interior angle (2)}\ = 85-55=30^{\circ} \)
 

\(x^{\circ}\) \(=180-30\ \ \text{(cointerior angles)} \)  
  \(=150^{\circ}\)  
Show Worked Solution

\(\text{Add parallel line:}\)
 

\(\text{Full interior angle}\ = 360-275=85^{\circ} \ \ \text{(360° about a point)} \)
 

\(\text{Since cointerior angles sum to 180°,}\)

\(\Rightarrow \text{interior angle (1)}\ = 180-125=55^{\circ} \)

\(\text{Since angles about a point sum to 360°,}\)

\(\Rightarrow \text{interior angle (2)}\ = 85-55=30^{\circ} \)
 

\(x^{\circ}\) \(=180-30\ \ \text{(cointerior angles)} \)  
  \(=150^{\circ}\)  

Filed Under: Solving Problems Tagged With: num-title-ct-core, smc-4926-25-Cointerior, smc-4926-60-Angles about a point, smc-4926-70-Add parallel line

Copyright © 2014–2025 SmarterEd.com.au · Log in