Solving Problems, SM-Bank 018 In the diagram below, find the value of \(x^{\circ}\), giving reasons for your answer. (2 marks) --- 4 WORK AREA LINES (style=lined) --- Show Answers Only \(y^{\circ}\ =70^{\circ} \ \ \text{(alternate angles)} \) \(x^{\circ}\ =z^{\circ} \ \ \text{(alternate angles)} \) \((z+y)^{\circ}\) \(=110^{\circ}\ \) \((x+y)^{\circ}\) \(=110^{\circ}\ \) \(x^{\circ}\) \(=110-70\) \(=40^{\circ}\) Show Worked Solution \(\text{Extend middle parallel line:}\) \(y^{\circ}\ =70^{\circ} \ \ \text{(alternate angles)} \) \(x^{\circ}\ =z^{\circ} \ \ \text{(alternate angles)} \) \((z+y)^{\circ}\) \(=110^{\circ}\ \) \((x+y)^{\circ}\) \(=110^{\circ}\ \) \(x^{\circ}\) \(=110-70\) \(=40^{\circ}\)