SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Solving Problems, SM-Bank 018

In the diagram below, find the value of \(x^{\circ}\), giving reasons for your answer.   (2 marks)
  

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(y^{\circ}\ =70^{\circ} \ \ \text{(alternate angles)} \)

\(x^{\circ}\ =z^{\circ} \ \ \text{(alternate angles)} \)

\((z+y)^{\circ}\) \(=110^{\circ}\ \)  
\((x+y)^{\circ}\) \(=110^{\circ}\ \)  
\(x^{\circ}\) \(=110-70\)  
  \(=40^{\circ}\)  
Show Worked Solution

\(\text{Extend middle parallel line:}\)
 

\(y^{\circ}\ =70^{\circ} \ \ \text{(alternate angles)} \)

\(x^{\circ}\ =z^{\circ} \ \ \text{(alternate angles)} \)

\((z+y)^{\circ}\) \(=110^{\circ}\ \)  
\((x+y)^{\circ}\) \(=110^{\circ}\ \)  
\(x^{\circ}\) \(=110-70\)  
  \(=40^{\circ}\)  

Filed Under: Solving Problems Tagged With: num-title-ct-core, smc-4926-15-Alternate, smc-4926-70-Add parallel line

Copyright © 2014–2025 SmarterEd.com.au · Log in