SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Solving Problems, SM-Bank 019

In the diagram below, \(PR\) is parallel to \(TU\) and reflex \(\angle QST = 255^{\circ}\)
  

Find the value of \(x^{\circ}\), giving reasons for your answer.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\angle QST = 360-255 = 105^{\circ}\ \ \text{(360° about a point)}\)

\(\angle VSQ =70^{\circ} \ \ \text{(alternate angles)} \)

\(\angle VST\ =x^{\circ} \ \ \text{(alternate angles)} \)

\(x^{\circ}\) \(=105-70\)  
  \(=35^{\circ}\)  
Show Worked Solution

\(\text{Add middle parallel line:}\)
 

\(\angle QST = 360-255 = 105^{\circ}\ \ \text{(360° about a point)}\)

\(\angle VSQ =70^{\circ} \ \ \text{(alternate angles)} \)

\(\angle VST\ =x^{\circ} \ \ \text{(alternate angles)} \)

\(x^{\circ}\) \(=105-70 \)  
  \(=35^{\circ}\)  

Filed Under: Solving Problems Tagged With: num-title-ct-core, smc-4926-15-Alternate, smc-4926-60-Angles about a point

Copyright © 2014–2025 SmarterEd.com.au · Log in