SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Proof, EXT1 P1 EQ-Bank 4

  1. Show that  \(\cos (A-B)-\cos (A+B)=2 \sin A \sin B\).    (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Using the result in part (a), or otherwise, prove by mathematical induction that, for \(n \geqslant 1\)
  3. \(\sin \theta+\sin (3 \theta)+\ldots+\sin ((2 n-1) \theta)=\dfrac{\sin ^2(n \theta)}{\sin \theta}\)   (3 marks)

    --- 15 WORK AREA LINES (style=lined) ---

Show Answers Only
a.     \(\cos (A-B)-\cos (A+B)\) \(=\cos A \cos B+\sin A \sin B-(\cos A \cos B-\sin A \sin B)\)
    \(=2 \sin A \cos B\).

 
b.
   \(\text{Proof (See worked solutions)}\)

Show Worked Solution
a.     \(\cos (A-B)-\cos (A+B)\) \(=\cos A \cos B+\sin A \sin B-(\cos A \cos B-\sin A \sin B)\)
    \(=2 \sin A \cos B\).

 

b.    \(\text{RTP:} \ \ \sin \theta+\sin (3 \theta)+\ldots+\sin ((2 n-1) \theta)=\dfrac{\sin ^2(n \theta)}{\sin \theta}\)

\(\text{If} \ \ n=1:\)

\(\text{LHS}=\sin \theta\)

\(\text {RHS}=\dfrac{\sin ^2 \theta}{\sin \theta}=\sin \theta=\text{LHS}\)

\(\therefore \text {True for} \ \ n=1\)
 

\(\text{Assume true for} \ \ n=k:\)

\(\sin \theta+\sin (3 \theta)+\ldots+\sin \left((2 k-1) \theta\right)=\dfrac{\sin ^2(k \theta)}{\sin \theta}\ \ …\ \text{(*)}\)
 

\(\text{Prove true for} \ \ n=k+1:\)

\(\sin \theta+\sin (3 \theta)+\cdots+\sin ((2 k-1) \theta)+\sin ((2 k+1) \theta)=\dfrac{\sin ^2((k+1) \theta)}{\sin \theta}\)

\(\text {LHS}\) \(=\dfrac{\sin ^2(k \theta)}{\sin \theta}+\sin ((2 k+1) \theta) \quad \text{(see (*) above)}\)
  \(=\dfrac{\sin ^2(k \theta)+\sin \theta \times \sin ((2 k+1) \theta)}{\sin \theta}\ \ …\ (1)\)

 
\(\text{Using part a:}\)

\(\sin \theta \cdot \sin ((2 k+1) \theta)\) \(=\dfrac{1}{2}[\cos (2 k \theta)-\cos ((2 k+2) \theta)]\)
  \(=\dfrac{1}{2}[\cos (2 k \theta)-\cos (2(k+1) \theta)]\)
  \(=\dfrac{1}{2}\left[1-2 \sin ^2(k \theta)-\left(1-2 \sin ^2((k+1) \theta)\right)\right]\)
  \(=\dfrac{1}{2}\left(2 \sin ^2((k+1) \theta)-2 \sin ^2(k \theta)\right)\)
  \(=\sin ^2((k+1) \theta)-\sin ^2(k \theta)\)

 
\(\text{Substitute into (1):}\)

\(\text {LHS}\) \(=\dfrac{\sin ^2(k \theta)+\sin ^2((k+1) \theta)-\sin ^2(k \theta)}{\sin \theta}\)
  \(=\dfrac{\sin ^2((k+1) \theta)}{\sin \theta}=\text{RHS}\)

 
\(\Rightarrow\ \text{True for}\ \ n=k+1\)

\(\therefore\ \text{Since true for}\ \ n=1, \text{by PMI, true for integers}\ \ n \geq 1.\)

Filed Under: P1 Induction (Y12) Tagged With: Band 6, smc-1019-40-Trig theme

Copyright © 2014–2025 SmarterEd.com.au · Log in