--- 5 WORK AREA LINES (style=lined) --- --- 7 WORK AREA LINES (style=lined) ---
Trigonometry, EXT1 T1 2014 HSC 11c
Sketch the graph `y = 6 tan^(-1)x`, clearly indicating the range. (2 marks)
Aussie Maths & Science Teachers: Save your time with SmarterEd
--- 5 WORK AREA LINES (style=lined) --- --- 7 WORK AREA LINES (style=lined) --- i. \(\tan ^{-1}(3 x)+\tan ^{-1}(10 x)=\theta \quad-\pi<\theta<\pi\) \(\text {Range:}\ \ \tan ^{-1}(3 x) \in\left(-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right), \ \tan ^{-1}(10 x) \in\left(-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right)\) \(\Rightarrow \text { Both are monotonically increasing functions}\) \(\Rightarrow\tan ^{-1}(3 x)+\tan ^{-1}(10 x) \text{ is also monotonically increasing with range }(-\pi, \pi)\) \(\Rightarrow \text{ Only 1 solution exists (horizontal line will only cut graph once).}\) ii. \(x=\dfrac{1}{2}\) i. \(\tan ^{-1}(3 x)+\tan ^{-1}(10 x)=\theta \quad-\pi<\theta<\pi\) \(\text {Range:}\ \ \tan ^{-1}(3 x) \in\left(-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right), \ \tan ^{-1}(10 x) \in\left(-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right)\) \(\Rightarrow \text { Both are monotonically increasing functions}\) \(\Rightarrow\tan ^{-1}(3 x)+\tan ^{-1}(10 x) \text{ is also monotonically increasing with range }(-\pi, \pi)\) \(\Rightarrow \text{ Only 1 solution exists (horizontal line will only cut graph once).}\) ii. \(\tan ^{-1}(3 x)+\tan ^{-1}(10 x)=\dfrac{3 \pi}{4}\) \(\tan \left(\tan ^{-1}(3 x)+\tan ^{-1}(10 x)\right)=\tan \left(\dfrac{3 \pi}{4}\right)\) \(\dfrac{\tan \left(\tan ^{-1}(3 x)\right)+\tan \left(\tan ^{-1}(10 x)\right)}{1-\tan \left(\tan ^{-1}(3 x)\right) \cdot \tan \left(\tan ^{-1}(10 x)\right)}=-1\) \(\text {Graph is monotonically increasing through } (0,0) \Rightarrow \ \Big(x \neq -\dfrac{1}{15} \Big)\) \(\therefore x=\dfrac{1}{2}\)
Show Answers Only
Show Worked Solution
\(\dfrac{3 x+10 x}{1-30 x^2}\)
\(=-1\)
\(13 x\)
\(=30 x^2-1\)
\(30 x^2-13 x-1\)
\(=0\)
\((15 x+1)(2 x-1)\)
\(=0\)
\(x=\dfrac{1}{2}\ \ \text {or}\ \ -\dfrac{1}{15}\)