Consider the integral \(\large{\displaystyle{\int}}_{\small{-\dfrac{5}{2}}}^{\small{\dfrac{5}{2}}}\) \(\left(\dfrac{1}{25-x^2}\right) d x\).
The substitution \(x=5 \sin \theta\) is applied.
Which of the following is obtained?
- \(\dfrac{1}{5}\large{\displaystyle{\int}}_{\small{-\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{6}}}\)\(\operatorname{cosec} \theta \, d \theta\)
- \(\dfrac{1}{5}\large{\displaystyle{\int}}_{\small{-\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{6}}}\)\(\sec \theta \, d \theta\)
- \(\dfrac{1}{25}\large{\displaystyle{\int}}_{\small{-\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{6}}}\)\(\operatorname{cosec}^2 \theta \, d \theta\)
- \(\dfrac{1}{25}\large{\displaystyle{\int}}_{\small{-\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{6}}}\)\(\sec ^2 \theta \, d \theta\)