- Find `d/(d theta) (sin^3 theta)`. (1 mark)
--- 1 WORK AREA LINES (style=lined) ---
- Use the substitution `x = tan theta` to evaluate `int_0^1 (x^2)/(1 + x^2)^(5/2)\ dx`. (4 marks)
--- 12 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
--- 1 WORK AREA LINES (style=lined) ---
--- 12 WORK AREA LINES (style=lined) ---
i. `d/(d theta) (sin^3 theta) = 3 cos theta sin^2 theta`
ii. `text(Let)\ x = tan theta`
`(dx)/(d theta) = sec^2 theta \ => \ dx = sec^2 theta\ d theta`
`text(When)\ x = 1, \ theta = pi/4`
`text(When)\ x = 0, \ theta = 0`
`int_0^1 (x^2)/(1 + x^2)^(5/2) dx` | `= int_0^(pi/4) (tan^2 theta)/((1 + tan^2 theta)^(5/2)) xx sec^2 theta\ d theta` |
`= int_0^(pi/4) (tan^2 theta)/((sec^2 theta)^(5/2)) xx sec^2 theta\ d theta` | |
`= int_0^(pi/4) (sin^2 theta)/(cos^2 theta) · 1/((sec^2 theta)^(3/2))\ d theta` | |
`= int_0^(pi/4) (sin^2 theta)/(cos^2 theta) · 1/(sec^3 theta)\ d theta` | |
`= int_0^(pi/4) sin^2 theta cos theta\ d theta` | |
`= 1/3[sin^3 theta]_0^(pi/4)` | |
`= 1/3(sin^3\ pi/4 – 0)` | |
`= 1/3 (1/sqrt2)^3` | |
`= 1/(6sqrt2)` | |
`= sqrt2/12` |