SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, EXT1 C2 2025 HSC 11g

Evaluate \(\displaystyle\int_{\small{\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{3}}} \cos ^2(3 x) d x\).   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\dfrac{\pi}{12}\)

Show Worked Solution
\(\displaystyle\int_{\small{\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{3}}} \cos ^2(3x) dx\) \(=\displaystyle \dfrac{1}{2} \int_{\small{\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{3}}} (\cos6x+1) dx \)
  \(=\dfrac{1}{2}\left[\dfrac{1}{6} \sin 6 x+x\right]_{\small{\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{3}}}\)
  \(=\dfrac{1}{2}\left[\left(\dfrac{1}{6} \sin 2 \pi+\dfrac{\pi}{3}\right)-\left(\dfrac{1}{6} \sin \pi+\dfrac{\pi}{6}\right)\right]\)
  \(=\dfrac{1}{2}\left(\dfrac{\pi}{3}-\dfrac{\pi}{6}\right)\)
  \(=\dfrac{\pi}{12}\)

Filed Under: Harder Trig Calculus (Ext1) Tagged With: Band 4, smc-1038-20-Integrate cos^2(x)

Calculus, EXT1 C2 2024 HSC 13b

  1. Show that  \(\cos ^4 x+\sin ^4 x=\dfrac{1+\cos ^2 2 x}{2}\).   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, evaluate  \(\displaystyle{\int}_0^{\frac{\pi}{4}}\left(\cos ^4 x+\sin ^4 x\right) d x\).  (3 marks)

    --- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

i.     \(\text{LHS}\) \(=\left[\dfrac{1}{2}(1+\cos (2 x)\right]^2+\left[\dfrac{1}{2}(1-\cos (2 x)\right]^2\)
    \(=\dfrac{1}{4}\left(1+2 \cos (2 x)+\cos ^2(2 x)+1-2 \cos (2 x)+\cos ^2(2 x)\right)\)
    \(=\dfrac{1}{4}\left(2+2 \cos ^{2}(2 x)\right)\)
    \(=\dfrac{1+\cos ^2(2 x)}{2}\)

  
ii.   \(\dfrac{3 \pi}{16}\)

Show Worked Solution

i.     \(\text{LHS}\) \(=\left[\dfrac{1}{2}(1+\cos (2 x)\right]^2+\left[\dfrac{1}{2}(1-\cos (2 x)\right]^2\)
    \(=\dfrac{1}{4}\left(1+2 \cos (2 x)+\cos ^2(2 x)+1-2 \cos (2 x)+\cos ^2(2 x)\right)\)
    \(=\dfrac{1}{4}\left(2+2 \cos ^{2}(2 x)\right)\)
    \(=\dfrac{1+\cos ^2(2 x)}{2}\)

  

ii.     \(\displaystyle{\int}_0^{\frac{\pi}{4}}\left(\cos ^4 x+\sin ^4 x\right) d x\)
    \(=\dfrac{1}{2} \displaystyle{\int}_0^{\frac{\pi}{4}} 1+\cos ^2(2 x) d x\)
    \(=\dfrac{1}{2} \displaystyle{\int}_0^{\frac{\pi}{4}} 1+\dfrac{1}{2}(1+\cos (4 x)) d x\)
    \(=\dfrac{1}{2}\left[\dfrac{3}{2}x +\dfrac{1}{8} \sin (4 x)\right]_0^{\frac{\pi}{4}}\)
    \(=\dfrac{1}{2}\left[\dfrac{3}{2} \times \dfrac{\pi}{4}+\dfrac{1}{8} \sin \pi-0\right]\)
    \(=\dfrac{3 \pi}{16}\)

Filed Under: Harder Trig Calculus (Ext1) Tagged With: Band 4, smc-1038-10-Integrate sin^2(x), smc-1038-20-Integrate cos^2(x)

Copyright © 2014–2025 SmarterEd.com.au · Log in