Complex Numbers, SPEC2 2019 VCAA 4 MC The expression `i^(1!) + i^(2!) + i^(3!) + …+ i^(100!)` is equal to `0` `96` `95 + i` `94 + 2i` `98 + 2i` Show Answers Only `C` Show Worked Solution `i^(1!) =i^1 = i` `i^(2!) =i^2= −1` `i^(3!) = i^6=-1` `i^(4!) = i^24 = 1` `i^(5!) = i^(24 xx 5)= 1^5 = 1` `=> i^(n!) = 1\ \ text(for)\ \ n >= 4` `:.\ text(Sum)` `= i – 1 – 1 + 97` `= 95 + i` `=>C`