SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, EXT2 V1 2025 HSC 10 MC

Which of the following gives the same curve as  \(\left(\begin{array}{c}\cos (t) \\ -t \\ \sin (t)\end{array}\right)\) for  \(t \in \mathbb{R}\) ?

  1. \(\left(\begin{array}{c}\cos (2 t) \\ 2 t \\ \sin (2 t)\end{array}\right)\)
  2. \(\left(\begin{array}{c}\cos \left(t^2+\dfrac{\pi}{2}\right) \\ t^2+\dfrac{\pi}{2} \\ \sin \left(t^2+\dfrac{\pi}{2}\right)\end{array}\right)\)
  3. \(\left(\begin{array}{c}\cos \left(t^2\right) \\ -t^2 \\ \sin \left(t^2\right)\end{array}\right)\)
  4. \(\left(\begin{array}{c}\cos \left(2 t+\dfrac{\pi}{2}\right) \\ 2 t+\dfrac{\pi}{2} \\ -\sin \left(2 t+\dfrac{\pi}{2}\right)\end{array}\right)\)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Find which option is a re-parametrisation of the given curve.}\)

\(\text{Consider option D:}\)

\(\text{Let}\ \ u=- \left(2t + \dfrac{\pi}{2}\right)\)

\(\text{Since}\ t \in \mathbb{R}\ \ \Rightarrow \ \ u \in \mathbb{R}\)

\(\cos \left(2 t+\dfrac{\pi}{2}\right) = \cos\left(- \left(2 t+\dfrac{\pi}{2}\right) \right) = \cos\,u\)

\(2 t+\dfrac{\pi}{2} = -\left( -\left(2 t+\dfrac{\pi}{2} \right) \right) = -u\)

\(-\sin \left(2 t+\dfrac{\pi}{2}\right) = \sin\left(- \left(2 t+\dfrac{\pi}{2}\right) \right) = \sin\,u\)

\(\Rightarrow D\)

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 5, smc-1196-45-Curves

Vectors, EXT2 V1 2021 HSC 7 MC

Which diagram best shows the curve described by the position vector

`underset~r (t) = -5 text{cos}(t) underset~i + 5 text{sin}(t) underset~j + t underset~k`  for  `0 ≤ t ≤ 4 pi` ?

 

Show Answers Only

`D`

Show Worked Solution

`text{By elimination}`

`text{Check graph coordinates for specific values of}\ t:`

`text{When} \ \ t = 4 pi \ , \ underset~r = -5 underset~i + 0 underset~j + 4 pi underset~k`

`-> \ text{Eliminate A and B}`

`text{When} \ t = pi/4 \ , \ underset~r = (-5)/sqrt(2) underset~i + 5/sqrt(2) underset~j + pi/4 underset~k`

`-> \ text{Eliminate C}`
 

`=>\ D`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 4, smc-1196-45-Curves, smc-1196-80-3D vectors

Copyright © 2014–2025 SmarterEd.com.au · Log in