Which of the following gives the same curve as \(\left(\begin{array}{c}\cos (t) \\ -t \\ \sin (t)\end{array}\right)\) for \(t \in \mathbb{R}\) ?
- \(\left(\begin{array}{c}\cos (2 t) \\ 2 t \\ \sin (2 t)\end{array}\right)\)
- \(\left(\begin{array}{c}\cos \left(t^2+\dfrac{\pi}{2}\right) \\ t^2+\dfrac{\pi}{2} \\ \sin \left(t^2+\dfrac{\pi}{2}\right)\end{array}\right)\)
- \(\left(\begin{array}{c}\cos \left(t^2\right) \\ -t^2 \\ \sin \left(t^2\right)\end{array}\right)\)
- \(\left(\begin{array}{c}\cos \left(2 t+\dfrac{\pi}{2}\right) \\ 2 t+\dfrac{\pi}{2} \\ -\sin \left(2 t+\dfrac{\pi}{2}\right)\end{array}\right)\)