SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, EXT2 V1 2025 HSC 16c

Consider the point \(B\) with three-dimensional position vector \(\underset{\sim}{b}\) and the line  \(\ell: \underset{\sim}{a}+\lambda \underset{\sim}{d}\), where \(\underset{\sim}{a}\) and \(\underset{\sim}{d}\) are three-dimensional vectors, \(\abs{\underset{\sim}{d}}=1\) and \(\lambda\) is a parameter.

Let \(f(\lambda)\) be the distance between a point on the line \(\ell\) and the point \(B\).

  1. Find \(\lambda_0\), the value of \(\lambda\) that minimises \(f\), in terms of \(\underset{\sim}{a}, \underset{\sim}{b}\) and \(\underset{\sim}{d}\).   (2 marks)

    --- 12 WORK AREA LINES (style=lined) ---

  2. Let \(P\) be the point with position vector  \(\underset{\sim}{a}+\lambda_0 \underset{\sim}{d}\).
  3. Show that \(PB\) is perpendicular to the direction of the line \(\ell\).   (1 mark)

    --- 7 WORK AREA LINES (style=lined) ---

  4. Hence, or otherwise, find the shortest distance between the line \(\ell\) and the sphere of radius 1 unit, centred at the origin \(O\), in terms of \(\underset{\sim}{d}\) and \(\underset{\sim}{a}\).
  5. You may assume that if \(B\) is the point on the sphere closest to \(\ell\), then \(O B P\) is a straight line.   (3 marks)

    --- 16 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(\lambda_0=\underset{\sim}{d}(\underset{\sim}{b}-\underset{\sim}{a})\)

ii.   \(\text{See Worked Solutions.}\)

iii.  \(d_{\min }= \begin{cases}\sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2}-1, & \sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2}>1 \\ 0, & \sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2} \leqslant 1 \ \ \text{(i.e. it touches sphere) }\end{cases}\)

Show Worked Solution

i.    \(\ell=\underset{\sim}{a}+\lambda \underset{\sim}{d}, \quad\abs{\underset{\sim}{d}}=1\)

\(\text{Vector from point \(B\) to a point on \(\ell\)}:\ \underset{\sim}{a}+\lambda \underset{\sim}{d}-\underset{\sim}{b}\)

\(f(\lambda)=\text{distance between \(\ell\) and \(B\)}\)

\(f(\lambda)=\abs{\underset{\sim}{a}-\underset{\sim}{b}+\lambda \underset{\sim}{d}}\)

\(\text{At} \ \ \lambda_0, f(\lambda) \ \ \text{is a min}\ \Rightarrow \ f(\lambda)^2 \ \ \text {is also a min}\)

\(f(\lambda)^2\) \(=\abs{\underset{\sim}{a}-\underset{\sim}{b}+\lambda \underset{\sim}{d}}^2\)
  \(=(\underset{\sim}{a}-\underset{\sim}{b}+\lambda \underset{\sim}{d})(\underset{\sim}{a}-\underset{\sim}{b}+\lambda \underset{\sim}{d})\)
  \(=(\underset{\sim}{a}-\underset{\sim}{b})\cdot (\underset{\sim}{a}-\underset{\sim}{b})+2\lambda (\underset{\sim}{a}-\underset{\sim}{b}) \cdot \underset{\sim}{d}+\lambda^2 \underset{\sim}{d} \cdot  \underset{\sim}{d}\)
  \(=\lambda^2|\underset{\sim}{d}|^2+2 \underset{\sim}{d} \cdot (\underset{\sim}{a}-\underset{\sim}{b}) \lambda +\abs{\underset{\sim}{a}-\underset{\sim}{b}}^2\)
  \(=\lambda^2+2 \underset{\sim}{d} \cdot (\underset{\sim}{a}-\underset{\sim}{b}) \lambda+\abs{\underset{\sim}{a}-\underset{\sim}{b}}^2\)

 

\(f(\lambda)^2 \ \ \text{is a concave up quadratic.}\)

\(f(\lambda)_{\text {min}}^2 \ \ \text{occurs at the vertex.}\)

\(\lambda_0=-\dfrac{b}{2 a}=-\dfrac{2 \underset{\sim}{d} \cdot (\underset{\sim}{a}-\underset{\sim}{b})}{2}=\underset{\sim}{d} \cdot (\underset{\sim}{b}-\underset{\sim}{a})\)
 

ii.    \(P \ \text{has position vector} \ \ \underset{\sim}{a}+\lambda_0 \underset{\sim}{d}\)

\(\text{Show} \ \ \overrightarrow{PB} \perp \ell:\)

\(\overrightarrow{PB}=\underset{\sim}{b}-\underset{\sim}{p}=\underset{\sim}{b}-\underset{\sim}{a}-\lambda_0 \underset{\sim}{d}\)

\(\overrightarrow{P B} \cdot \underset{\sim}{d}\) \(=\left(\underset{\sim}{b}-\underset{\sim}{a}-\lambda_0 \underset{\sim}{d}\right) \cdot \underset{\sim}{d}\)
  \(=(\underset{\sim}{b}-\underset{\sim}{a}) \cdot \underset{\sim}{d}-\lambda_0 \underset{\sim}{d} \cdot \underset{\sim}{d}\)
  \(=\lambda_0-\lambda_0\abs{\underset{\sim}{d}}^2\)
  \(=0\)

  

\(\therefore \overrightarrow{PB}\ \text{is perpendicular to the direction of the line}\ \ell. \)
 

iii.   \(\text{Shortest distance between} \ \ell \ \text{and sphere (radius\(=1\))}\)

\(=\ \text{(shortest distance \(\ell\) to \(O\))}-1\)
 

\(f\left(\lambda_0\right)=\text{shortest distance \(\ell\) to point \(B\)}\)

\(\text{Set} \ \ \underset{\sim}{b}=0 \ \Rightarrow \ f\left(\lambda_0\right)=\text{shortest distance \(\ell\) to \(0\)}\)

\(\Rightarrow \lambda_0=\underset{\sim}{d} \cdot (\underset{\sim}{b}-\underset{\sim}{a})=-\underset{\sim}{d} \cdot \underset{\sim}{a}\)

\(f\left(\lambda_0\right)\) \(=\abs{\underset{\sim}{a}-\underset{\sim}{b}-(\underset{\sim}{d} \cdot \underset{\sim}{a})\cdot \underset{\sim}{d}}=\abs{\underset{\sim}{a}-(\underset{\sim}{d} \cdot \underset{\sim}{a})\cdot \underset{\sim}{d}}\)
\(f\left(\lambda_0\right)^2\) \(=\abs{\underset{\sim}{a}}^2-2( \underset{\sim}{a}\cdot \underset{\sim}{d})^2+(\underset{\sim}{d} \cdot \underset{\sim}{a})^2\abs{\underset{\sim}{d}}^2\)
  \(=\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2\)
\(f\left(\lambda_0\right)\) \(=\sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2}\)

 

\(\text {Shortest distance of \(\ell\) to sphere \(\left(d_{\min }\right)\):}\)

\(d_{\min }= \begin{cases}\sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2}-1, & \sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2}>1 \\ 0, & \sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2} \leqslant 1 \ \ \text{(i.e. it touches sphere) }\end{cases}\)

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 5, Band 6, smc-1196-48-Spheres, smc-1196-80-3D vectors

Vectors, EXT2 V1 SM-Bank 21

  1. Find the equation of the vector line  `underset~v`  that passes through  `Atext{(5, 2, 3)}`  and  `B(7, 6, 1)`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. A sphere has centre  `underset~c`  at  `text{(2, 3, 5)}`  and a radius of  `5sqrt2`  units.
    Find the points where the vector line  `underset~v`  meets the sphere.  (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `underset~v = ((5),(2),(3)) + lambda((1),(2),(−1))`
  2. `((2),(–4),(6)), \ ((7),(6),(1))`
Show Worked Solution

i.   `overset(->)(BA) = ((7-5),(6-2),(1-3)) = ((2),(4),(−2)) = 2((1),(2),(−1))`

`underset~v = ((5),(2),(3)) + lambda((1),(2),(−1))`
 

ii.   `text(General point)\ underset~v:`

`x = 5 + lambda`

`y = 2 + 2lambda`

`z = 3-lambda`
 

`text(Equation of sphere,)\ underset~c = (2, 3, 5),\ text(radius)\ 5sqrt2:`

`(x-2)^2 + (y-3)^2 + (z -5)^2` `= (5sqrt2)^2`
`(lambda + 3)^2 + (2lambda-1)^2 + (−lambda-2)^2` `= 50`
`lambda^2 + 6lambda + 9 + 4lambda^2-4lambda + 1 + lambda^2 + 4lambda + 4` `= 50`
`6lambda^2 + 6lambda + 14` `= 50`
`6lambda^2 + 6lambda-36` `= 0`
`6(lambda + 3)(lambda-2)` `= 0`
`lambda` `= –3\ text(or)\ 2`

 
`text(When)\ \ lambda = –3,`

`text(Intersection) = ((5),(2),(3))-3((1),(2),(−1)) = ((2),(–4),(6))`

`text(When)\ \ lambda = 2,`

`text(Intersection) = ((5),(2),(3)) + 2((1),(2),(−1)) = ((7),(6),(1))`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 3, smc-1196-10-Find line given 2 points, smc-1196-48-Spheres, smc-1196-80-3D vectors

Vectors, EXT2 V1 SM-Bank 18

A sphere is represented by the equation

`x^2-4x + y^2 + 8y + z^2-3z + 2 = 0`

  1. Determine the centre  `underset~c`  and radius of the sphere.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the vector equation of the sphere.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  `underset~c = ((2),(-4),({3}/{2})) \ , \ text(radius) = (9)/(2)`
  2. `| \ underset~r-((2),(-4),({3}/{2})) | = (9)/(2)`
Show Worked Solution

i.  `x^2-4x + y^2 + 8y + z^2-3z + 2 = 0`

`(x-2)^2 + (y+4)^2 + (z-{3}/{2})^2 + 2-(89)/(4) = 0`

`(x-2)^2 + (y+4)^2 + (z-{3}/{2})^2 = (81)/(4)`
 
`:. \ underset~c = ((2),(-4),({3}/{2})) \ , \ text(radius) = (9)/(2)`
 

ii. `text(Vector equation:)`

`| \ underset~r-((2),(-4),({3}/{2})) | = (9)/(2)`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 3, smc-1196-48-Spheres, smc-1196-80-3D vectors

Copyright © 2014–2025 SmarterEd.com.au · Log in