If `m = int_1^3 (2)/(x)\ dx`, express `e^m` in its simplest form. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
If `m = int_1^3 (2)/(x)\ dx`, express `e^m` in its simplest form. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`9`
`int_1^3 (2)/(x)\ dx` | `= [2 log_e x]_1^3` |
`m` | `= 2 log_e 3 – 2 log_e 1` |
`= 2 log_e 3` | |
`:. e^m` | `=e^(2 log_e 3)` |
`= e^(log_e 9)` | |
`= 9` |
Evaluate `int_0^3 (8x)/(1 + x^2) \ dx`. (3 marks)
`4 log_e 10`
`int_0^3 (8x)/(1 + x^2) \ dx`
`= 4 int_0^3 (2x)/(1 + x^2) \ dx`
`= 4 [log_e (1 + x^2)]_0^3`
`= 4 [log_e (1 + 9) – log_e (1 + 0)]`
`= 4 [log_e 10 – log_e 1]`
`= 4 log_e 10`
Evaluate `int_e^(e^3) 5/x\ dx` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`10`
`int_e^(e^3) 5/x\ dx`
`=5int_e^(e^3) 1/x\ dx`
`=5[lnx]_e^(e^3)`
`=5(lne^3-lne)`
`=5(3-1)`
`=10`
What is the value of `int_1^4 1/(3x)\ dx`?
`B`
`int_1^4 1/(3x)dx`
`=1/3[lnx]_1^4`
`=1/3[ln4-ln1]`
`=1/3ln4`
`=>B`
Evaluate `int_0^1x^2/(x^3+1)\ dx` (3 marks)
`1/3ln2`
`int_0^1x^2/(x^3+1)dx`
`=1/3int_0^1(3x^2)/(x^3+1)dx`
`=1/3[ln(x^3+1)]_0^1`
`=1/3(ln2-ln1)`
`=1/3ln2`