SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C4 2023 MET1 5

  1. Evaluate  \(\displaystyle \int_{0}^{\frac{\pi}{3}} \sin(x)\,dx\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, find all values of \(k\) such that \(\displaystyle \int_{0}^{\frac{\pi}{3}} \sin(x)\,dx=\displaystyle \int_{k}^{\frac{\pi}{2}} \cos(x)\,dx\), where \(-3\pi<k<2\pi\).   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\dfrac{1}{2}\)

b.    \(k=\dfrac{-11\pi}{6},\ \dfrac{-7\pi}{6},\ \dfrac{\pi}{6},\ \dfrac{5\pi}{6}\)

Show Worked Solution
a.    \(\displaystyle \int_{0}^{\frac{\pi}{3}} \sin(x)\,dx\) \(=\left[-\cos x\right]_0^\frac{\pi}{3}\)
    \(=-\cos\dfrac{\pi}{3}+\cos 0\)
    \(=-\dfrac{1}{2}+1\)
    \(=\dfrac{1}{2}\)

 

b.    \(\displaystyle \int_{k}^{\frac{\pi}{2}} \cos(x)\,dx\) \(=\left[\sin x\right]_k^\frac{\pi}{2}\)
    \(=\sin\bigg(\dfrac{\pi}{2}\bigg)-\sin (k)\)
    \(=1-\sin (k)\)

 
\(\text{Using part (a):}\)

\(1-\sin (k)\) \(=\dfrac{1}{2}\)
\(\sin (k)\) \(=\dfrac{1}{2}\)
\(\therefore\ k\) \(=\dfrac{-11\pi}{6},\ \dfrac{-7\pi}{6},\ \dfrac{\pi}{6},\ \dfrac{5\pi}{6}\)

Filed Under: Trig Integration Tagged With: Band 4, smc-1204-10-Sin, smc-1204-20-Cos

Calculus, 2ADV C4 2008 HSC 5a

The gradient of a curve is given by  `dy/dx = 1-6 sin 3x`. The curve passes through the point  `(0, 7)`.

What is the equation of the curve?   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`y = x + 2 cos 3x + 5`

Show Worked Solution
`dy/dx` `= 1-6 sin 3x`
`y` `= int 1-6 sin 3x\ dx`
  `= x + 2 cos 3x + c`

 

`text(Passes through)\ (0,7):`

`=> 0 + 2 cos 0 + c` `= 7`
`2 + c` `= 7`
`c` `= 5`

 

`:.\ text(Equation is)\ \ \ y = x + 2 cos 3x + 5`

Filed Under: Differentiation and Integration, Integrals, Other Integration Applications (Y12), Trig Integration Tagged With: Band 4, smc-1204-10-Sin, smc-1213-25-Tangents/Primitive function

Calculus, 2ADV C4 2014 HSC 11e

Evaluate  `int_0^(pi/2) sin (x/2)\ dx`.   (3 marks)

Show Answers Only

`2\ – sqrt2`

Show Worked Solution

`int_0^(pi/2) sin (x/2)\ dx`

`= [-2cos (x/2)]_0^(pi/2)`

`= -2 [ cos (pi/4)\ – cos 0]`

`= -2 [ 1/sqrt2\ – 1]`

`= -2/sqrt2 + 2`

`= 2\ – sqrt2`

Filed Under: Differentiation and Integration, Integrals, Trig Integration Tagged With: Band 4, smc-1204-10-Sin

Copyright © 2014–2025 SmarterEd.com.au · Log in