SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Proof, EXT2 P1 2025 HSC 11e

Prove by contradiction that  \(\sqrt{3}+\sqrt{5}>\sqrt{11}\).   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{Prove} \ \ \sqrt{3}+\sqrt{5}>\sqrt{11}\)

\(\text{Assume}\ \ \sqrt{3}+\sqrt{5}\) \(\leqslant\sqrt{11}\)
\((\sqrt{3}+\sqrt{5})^2\) \(\leqslant 11\)
\(3+2 \sqrt{15}+5\) \(\leqslant 11\)
\(2 \sqrt{15}\) \(\leqslant 3\)
\(60\) \(\leqslant 9 \ \text{(incorrect)}\)

 

\(\therefore \ \text{By contradiction} \ \ \sqrt{3}+\sqrt{5}>\sqrt{11}\)

Show Worked Solution

\(\text{Prove} \ \ \sqrt{3}+\sqrt{5}>\sqrt{11}\)

\(\text{Assume}\ \ \sqrt{3}+\sqrt{5}\) \(\leqslant\sqrt{11}\)
\((\sqrt{3}+\sqrt{5})^2\) \(\leqslant 11\)
\(3+2 \sqrt{15}+5\) \(\leqslant 11\)
\(2 \sqrt{15}\) \(\leqslant 3\)
\(60\) \(\leqslant 9 \ \text{(incorrect)}\)

 

\(\therefore \ \text{By contradiction} \ \ \sqrt{3}+\sqrt{5}>\sqrt{11}\)

Filed Under: Converse, Contradiction and Contrapositive Proof Tagged With: Band 4, smc-1207-10-Contradiction, smc-1207-60-Inequalities

Proof, EXT2 P1 SM-Bank 15

Prove  `sqrt5 + sqrt3 > sqrt14`  by contradiction.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(See Worked Solutions)`

Show Worked Solution

`text(Proof by contradiction:)`

`text(Assume)\ \ sqrt5 + sqrt3 <= sqrt14`

`(sqrt5 + sqrt3)^2` `<= (sqrt14)^2`
`5 + 2sqrt15 + 3` `<= 14`
`2sqrt15` `<= 6`
`sqrt15` `<= 3`
`15` `<= 9\ \ \ text{(incorrect)}`

 
`:. text(By contradiction,)\ sqrt5 + sqrt3 > sqrt14`

Filed Under: Contradiction, Contrapositive and Other Proofs, Converse, Contradiction and Contrapositive Proof Tagged With: Band 3, smc-1207-10-Contradiction, smc-1207-60-Inequalities, smc-5116-10-Contradiction, smc-5116-60-Inequalities

Proof, EXT2 P1 SM-Bank 10

Prove that  `sqrt11 - sqrt5 < sqrt2`  by contradiction.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`text{Proof (See Worked Solutions)}`

Show Worked Solution

`text(Proof by contradiction:)`

`text(Assume that)\ \ sqrt11 – sqrt5 >= sqrt2`

`( sqrt11 – sqrt5)^2` `>=  2`
`11  –  2 sqrt55  +  5` `>= 2`
`2 sqrt55` `<= 14`
`sqrt55` `<= 7`
`55` `<= 49 \ \ text{(which is incorrect)}`

 
`:.\ text(By contradiction,) \ sqrt11 – sqrt5 < sqrt2`

Filed Under: Contradiction, Contrapositive and Other Proofs, Converse, Contradiction and Contrapositive Proof Tagged With: Band 3, smc-1207-10-Contradiction, smc-1207-60-Inequalities, smc-5116-10-Contradiction, smc-5116-60-Inequalities

Copyright © 2014–2025 SmarterEd.com.au · Log in