SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, EXT2 V1 EQ-Bank 10

Given  `underset~a=(3,-2,1)`  and  `underset~b=(4,3,-4)`, verify numerically that 

`underset~a*underset~b=abs(underset~a)abs(underset~b)cos theta=x_1x_2+y_1y_2+z_1z_2`

where  `underset~a=(x_1,y_1,z_1)`  and  `underset~b=(x_2,y_2,z_2)`   (4 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

`text{See Worked Solution}`

Show Worked Solution

`text{Scalar Product result 1:}`

`underset~a*underset~b` `=x_1x_2+y_1y_2+z_1z_2`  
  `=3xx4+(-2)xx3+1xx(-4)`  
  `=2`  

 
`text{Scalar Product result 2:}`

`underset~a*underset~b=abs(underset~a)abs(underset~b)cos theta`

`text{Let}\ \ underset~c=underset~b-underset~a`

`underset~c=((4),(3),(-4))-((3),(-2),(1))=((1),(5),(-5))`

`abs(underset~c)=sqrt(1^2+5^2+(-5)^2)=sqrt(51)`

`abs(underset~a)=sqrt(3^2+(-2)^2+1^2)=sqrt(14)`

`abs(underset~b)=sqrt(4^2+3^2+(-4)^2)=sqrt(41)`
 

`text{Using cosine rule:}\ \ c^2=a^2+b^2-2ab\ cosC`

`=>\ \ ab\ cosC=(a^2+b^2-c^2)/2`

`underset~a*underset~b` `=abs(underset~a)abs(underset~b)cos theta`  
  `=(abs(underset~a)^2+abs(underset~b)^2-abs(underset~c)^2)/2`  
  `=(14+41-51)/2`  
  `=2`  

 
`:.underset~a*underset~b=abs(underset~a)abs(underset~b)cos theta=x_1x_2+y_1y_2+z_1z_2`

Filed Under: Vectors and Geometry Tagged With: Band 4, smc-1210-40-Triangle, smc-1210-80-Identity proof

Copyright © 2014–2025 SmarterEd.com.au · Log in