SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Matrices, GEN1 2024 NHT 32 MC

An online shop offers monthly subscriptions for protein powder.

The shop offers protein powder in three flavours: vanilla \((V)\), chocolate \((C)\) and malt \((M)\).

Let \(P_n\) be the state matrix that shows the expected number of subscribers for each flavour \(n\) months after sales of the protein powder began.

The expected number of subscribers for each flavour can be determined by the matrix recurrence rule

\(P_{n+1}=T P_n+K\)

where

\begin{aligned}
& \quad \quad \quad \ \text { this month }\\
& \quad \quad \quad \ V \quad \ \ C \quad \ M \\ 
& T=\begin{bmatrix}0.2 & 0.2 & 0.1 \\
0.4 & 0.2 & 0.1 \\
0.4 & 0.6 & 0.8
\end{bmatrix} \begin{array}{l}
V \\ C\\ M
\end{array}
\ \text{next month} \quad \text { and } \quad K=\begin{bmatrix} 93 \\ 59 \\ 9\end{bmatrix}\begin{array}{l}V \\ C \\ M \end{array}\end{aligned}

The state matrix, \(P_2\), below shows the expected number of subscribers for each flavour two months after sales began.

\begin{align*}
P_2=\begin{bmatrix}
147 \\
137 \\
199
\end{bmatrix}
\end{align*}

The increase in the expected number of subscribers for vanilla \((V)\) between the initial sales, \(P_0\), and the first month after sales began, \(P_1\), is equal to

  1. 27
  2. 54
  3. 60
  4. 87
  5. 93
Show Answers Only

\(C\)

Show Worked Solution

\(P_{n+1} = TP_{n}+K\ \Rightarrow\ P_2=TP_1+K \ \Rightarrow\ P_1=T^{-1}(P_2-K) \) 
 

\(P_1=\begin{bmatrix}0.2 & 0.2 & 0.1 \\ 0.4 & 0.2 & 0.1 \\ 0.4 & 0.6 & 0.8\end{bmatrix}^{-1}\left(\begin{bmatrix}147 \\ 137 \\ 199\end{bmatrix}-\begin{bmatrix}93 \\ 59 \\ 9\end{bmatrix}\right)=\begin{bmatrix} 120 \\ 98 \\ 104\end{bmatrix}\)
 

\(P_0=\begin{bmatrix}0.2 & 0.2 & 0.1 \\ 0.4 & 0.2 & 0.1 \\ 0.4 & 0.6 & 0.8\end{bmatrix}^{-1}\left(\begin{bmatrix}120 \\ 98 \\ 104\end{bmatrix}-\begin{bmatrix}93 \\ 59 \\ 9\end{bmatrix}\right)=\begin{bmatrix}60 \\ 49 \\ 52\end{bmatrix}\)
 

\(\therefore\ \text{Increase in vanilla subscribers}\ =120-60=60\)

\(\Rightarrow C\)

Filed Under: Transition Matrices - Modified Tagged With: Band 5, smc-1893-25-Inverse Matrix, smc-1893-33-5x5 Matrix

MATRICES, FUR1 2018 VCAA 7 MC

A study of the antelope population in a wildlife park has shown that antelope regularly move between three locations, east (`E`), north (`N`) and west (`W`).

Let  `A_n` be the state matrix that shows the population of antelope in each location `n` months after the study began.

The expected population of antelope in each location can be determined by the matrix recurrence rule
 

`A_(n + 1) = T A_n - D`
 

where

`{:(),(),(T=):}{:(qquadquadtext(this month)),((qquadE,quadN,quadW)),([(0.4,0.2,0.2),(0.3,0.6,0.3),(0.3,0.2,0.5)]):}{:(),(),({:(E),(N),(W):}):}{:(),(),(text(next month)):}`

and

`D = [(50),(50),(50)]{:(E),(N),(W):}`
 

The state matrix, `A_3`, below shows the population of antelope three months after the study began.
 

`A_3 = [(1616),(2800),(2134)]{:(E),(N),(W):}`
 

The number of antelope in the west (`W`) location two months after the study began, as found in the state matrix `A_2`, is closest to

  1. 2060
  2. 2130
  3. 2200
  4. 2240
  5. 2270
Show Answers Only

`E`

Show Worked Solution

`A_(n + 1) = TA_n – D\ \ (text(given))`

♦♦ Mean mark 28%.

`A_3` `= TA_2 – D`
`TA_2` `= [(1616),(2800),(2134)] + [(50),(50),(50)] = [(1666),(2850),(2184)]`
`A_2` `= [(0.4,0.2,0.2),(0.3,0.6,0.3),(0.3,0.2,0.5)]^(−1)[(1666),(2850),(2184)] = [(1630),(2800),(2270)]`

 
`:.\ text(Antelope population in the west = 2270)`

`=> E`

Filed Under: Transition Matrices - Modified Tagged With: Band 5, smc-1893-20-State Matrix in discrete period, smc-1893-33-5x5 Matrix

Copyright © 2014–2025 SmarterEd.com.au · Log in