SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, SPEC2 2016 VCAA 8 MC

Using a suitable substitution,  `int_a^b (x^3e^(2x^4))\ dx`, where  `a`  and  `b`  are real constants, can be written as

A.  `int_a^b (e^(2u))\ du`

B.  `int_(a^4)^(b^4) (e^(2u))\ du`

C.  `1/8 int_a^b (e^u)\ du`

D.  `1/4 int_(a^4)^(b^4) (e^(2u))\ du`

E.  `1/8 int_(8a^3)^(8b^3) (e^u)\ du` 

Show Answers Only

`D`

Show Worked Solution
`u` `= x^4`
`(du)/(dx)` `= 4x^3\ \ =>\ \ 1/4\ du = x^3\ dx`

  
`text(When)\ \ x=a, \ u=a^4`

`text(When)\ \ x=b, \ u=b^4`
 

`:. int_a^b x^3 e^(2x^4)\ dx`

`= 1/4 int_(a^4)^(b^4) e^(2u)\ du`
 

`=>  D`

Filed Under: Integration by Substitution (SM) Tagged With: Band 4, smc-2564-20-Polynomial

Copyright © 2014–2025 SmarterEd.com.au · Log in