Using a suitable substitution, `int_a^b (x^3e^(2x^4))\ dx`, where `a` and `b` are real constants, can be written as
A. `int_a^b (e^(2u))\ du`
B. `int_(a^4)^(b^4) (e^(2u))\ du`
C. `1/8 int_a^b (e^u)\ du`
D. `1/4 int_(a^4)^(b^4) (e^(2u))\ du`
E. `1/8 int_(8a^3)^(8b^3) (e^u)\ du`