SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

CHEMISTRY, M5 2024 HSC 11 MC

Which is the correct expression for calculating the solubility (in mol L\(^{-1}\)) of lead\(\text{(II}\)) iodide in a 0.1 mol L\(^{-1}\) solution of \(\ce{NaI}\) at 25°C?

  1. \(\dfrac{9.8 \times 10^{-9}}{2 \times 0.1}\)
  2. \(\dfrac{9.8 \times 10^{-9}}{(2 \times 0.1)^2}\)
  3. \(\dfrac{9.8 \times 10^{-9}}{0.1}\)
  4. \(\dfrac{9.8 \times 10^{-9}}{(0.1)^2}\)
Show Answers Only

\(D\)

Show Worked Solution

\(\ce{PbI2(s) \rightleftharpoons Pb^{2+}(aq) + 2I^-(aq)}\)

  • Let the solubility of \(\ce{PbI2} = x\ \text{mol L}^{-1}\)

\begin{array} {|c|c|c|c|}
\hline  \text{Concentration (mol/L)} & \ce{PbI2} & \ce{Pb^{2+}} & \ce{2I^-} \\
\hline \text{Initial} & – & 0 & 0.1 \\
\hline \text{Change} & – & +x & +2x \\
\hline \text{Equilibrium} & – & x & 0.1 +2x \\
\hline \end{array}

  • As \(x\) is very small, assume  \(0.1 +2x \approx 0.1\)

\(K_{sp} \ce{=[Pb^{2+}][I^-]^2} =9.8 \times 10^{-9}\)

\(K_{sp} = 0.1^2 \times x =9.8 \times 10^{-9}\)

\(\therefore x=\dfrac{9.8 \times 10^{-9}}{0.1^2}\)

\(\Rightarrow D\)

♦ Mean mark 55%.

Filed Under: Solution Equilibria Tagged With: Band 5, smc-3672-30-Common ion effect

Copyright © 2014–2025 SmarterEd.com.au · Log in