SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Ratio, SM-Bank 054

James found a fly that was 8 mm long in real life.

Calculate the scale used in this scale drawing of the fly.  (2 marks)

Show Answers Only

\(7\ :\ 1\)

Show Worked Solution
\(\text{Scale}\) \(=\text{Scaled length}\ :\ \text{Actual length}\)
  \(=5.6\ \text{cm}\ :\ 8\ \text{mm}\)
  \(=56\ \text{mm}\ :\ 8\ \text{mm}\)
  \(=7\ :\ 1\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 053

Oliver's bike is 1.68 metres long in real life.

Calculate the scale used in this scale drawing of Oliver's bike.  (2 marks)

Show Answers Only

\(1\ :\ 42\)

Show Worked Solution
\(\text{Scale}\) \(=\text{Scaled length}\ :\ \text{Actual length}\)
  \(=4\ \text{cm}\ :\ 1.68\ \text{m}\)
  \(=4\ \text{cm}\ :\ 168\ \text{cm}\)
  \(=1\ :\ 42\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 052

Macton and Brownville are 15 centimetres apart on a map with a scale of \(1:150\ 000\). How far apart, in kilometres, are the two cities in real life?  (2 marks)

Show Answers Only

\(22.5\ \text{km}\)

Show Worked Solution

\(\text{Scale factor}=150\ 000\)

\(\text{Actual distance}\) \(=\text{Scaled distance}\times \text{scale factor}\)
  \(=15\times 150\ 000\ \text{cm}\)
  \(=2\ 250\ 000\ \text{cm}\)
  \(=22.5\ \text{km}\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 051

Jinderee and Exetroll are 8 centimetres apart on a map with a scale of \(1\ :\ 2000\). How far apart, in kilometres, are the two towns in real life?  (2 marks)

Show Answers Only

\(0.16\ \text{km}\)

Show Worked Solution

\(\text{Scale factor}=2000\)

\(\text{Actual distance}\) \(=\text{Scaled distance}\times \text{scale factor}\)
  \(=8\times 2000\ \text{cm}\)
  \(=16\ 000\ \text{cm}\)
  \(=0.16\ \text{km}\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 050

Determine the scale factor if a scaled length of 1.6 centimetres represents an actual length of 0.48 kilometres.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(30\ 000\)

Show Worked Solution

\(\text{Scale ratio}=\text{scale length}\ :\ \text{actual length}\)

\(=1.6\ \text{cm}\ :\ 0.48\ \text{km}\)

\(=1.6\ \text{cm}\ :\ 48\ 000\ \text{cm}\)

\(=1\ :30\ 000\)

\(\text{Scale factor}\)

\(=30\ 000\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 049

Determine the scale factor if an actual length of 2 centimetres represents a scaled length of 5 metres.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\dfrac{1}{250}\)

Show Worked Solution

\(\text{Scale ratio}=\text{scale length}\ :\ \text{actual length}\)

\(=5\ \text{m}\ :\ 2\ \text{cm}\)

\(=500\ \text{cm}\ :\ 2\ \text{cm}\)

\(=500\ :\ 2\)

\(=1\ :\ \dfrac{1}{250}\)

\(\text{Scale factor}\)

\(=\dfrac{1}{250}\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 048

Determine the scale factor if an actual length of 0.3 millimetres represents a scaled length of 15 centimetres.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\dfrac{1}{500}\)

Show Worked Solution

\(\text{Scale ratio}=\text{scale length}\ :\ \text{actual length}\)

\(=15\ \text{cm}\ :\ 0.3\ \text{mm}\)

\(=1500\ \text{mm}\ :\ 3\ \text{mm}\)

\(=500\ :\ 1\)

\(=1\ :\ \dfrac{1}{500}\)

\(\text{Scale factor}\)

\(=\dfrac{1}{500}\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 047

Determine the scale factor if an actual length of 2 millimetres represents a scaled length of 2 metres.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\dfrac{1}{1000}\)

Show Worked Solution

\(\text{Scale ratio}=\text{scale length}\ :\ \text{actual length}\)

\(=2\ \text{m}\ :\ 2\ \text{mm}\)

\(=2000\ \text{mm}\ :\ 2\ \text{mm}\)

\(=1000\ :\ 1\)

\(=1\ :\ \dfrac{1}{1000}\)

\(\text{Scale factor}\)

\(=\dfrac{1}{1000}\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 046

Determine the scale factor if a length of 3 centimetres on a map represents an actual length of 2.4 kilometres.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(80\ 000\)

Show Worked Solution

\(\text{Scale ratio}\)

\(=3\ \text{cm}\ :\ 2.4\ \text{km}\)

\(=3\ \text{cm}\ :\ 240\ 000\ \text{cm}\)

\(=1\ :\ 80\ 000\)

\(\text{Scale factor}\)

\(=80\ 000\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 045

Determine the scale factor if a length of 5 millimetres on a map represents an actual distance of 20 metres.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(4000\)

Show Worked Solution

\(\text{Scale ratio}\)

\(=5\ \text{mm}\ :\ 20\ \text{m}\)

\(=5\ \text{mm}\ :\ 20\ 000\ \text{mm}\)

\(=1\ :\ 4000\)

\(\text{Scale factor}\)

\(=4000\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 044

A model train is built using a scale of \(4:20\ 000\).

For each of these actual lengths, find the scaled length.

  1. \(40\ \text{m}\)  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. \(87\ 450\ \text{cm}\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. \(2400\ \text{m}\)  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\text{8 mm or 0.8 cm}\)

b.    \(\text{17.49 cm or 0.1749 m}\)

c.    \(\text{48 cm or 0.48 m}\)

Show Worked Solution

\(\text{Scale}\ \rightarrow\ 4:20\ 000=1:5000\)

a.    \(\text{Scaled length }\) \(\dfrac{40}{5000}\ \text{m}=\dfrac{40\ 000}{5000}\ \text{mm}\)
    \(=\text{8 mm}=\text{0.8 cm}\)

 

b.    \(\text{Scaled length}\) \(=\dfrac{87\ 450}{5000}\ \text{cm} \)
    \(=\text{17.49 cm}=\text{0.1749 m}\)

 

c.    \(\text{Scaled length}\) \(=\dfrac{2400}{5000}\ \text{m}=\dfrac{240\ 000}{5000}\ \text{cm}\)
    \(=\text{48 cm}=\text{0.48 m}\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 043

The scale on a map is \(4:20\ 000\).

For each of these scaled distances, find the actual distances in kilometres.

  1. \(2\ \text{cm}\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. \(5\ \text{mm}\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. \(18.4\ \text{cm}\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(100\ \text{m or } 0.1\ \text{km}\)

b.    \(40\ \text{m or } 0.04\ \text{km}\)

c.    \(920\ \text{m or } 0.92\ \text{km}\)

Show Worked Solution

\(\text{Scale}=4:20\ 000=1:5000\)

a.    \(\text{Actual Distance}\) \(=2\ \text{cm}\times 5000 \)
    \(= 10\ 000\ \text{cm}\)
    \(=100\ \text{m}=0.1\ \text{km}\)

 

b.    \(\text{Actual Distance}\) \(=8\ \text{mm}\times 5000 \)
    \(=40\ 000\ \text{mm}\)
    \(=40\ \text{m}=0.04\ \text{km}\)

 

c.    \(\text{Actual Distance}\) \(=18.4\ \text{cm}\times 5000 \)
    \(= 92\ 000\ \text{cm}\)
    \(=920\ \text{m}=0.92\ \text{km}\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 041 MC

An ancient coin is made up of gold and silver in the ratio 1:3.

The coin weighs 21.65 grams.

How many grams of silver are in the ancient coin?

  1. \(5.4125\)
  2. \(7.217\)
  3. \(14.433\)
  4. \(16.2375\)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Total parts}=1+3=4\) 
  

\(\text{Fraction of silver}=\dfrac{3}{4}\)

\(\text{Silver}=\dfrac{3}{4}\times 21.65=16.2375\)
  

\(\Rightarrow D\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-30-Unitary method ratio

Ratio, SM-Bank 040

Paul stacks milk cartons into supermarket refrigerator shelves.

Each shelf is stacked with 6 full cream milk cartons, 4 lite milk cartons and 2 skim milk cartons.

Every hour Paul stacks 240 milk cartons in total.

How many lite milk cartons does he stack every hour?  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(80\)

Show Worked Solution

\(\text{Total Cartons per shelf}=6+4+2=12\)
  

\(\text{Fraction of lite}=\dfrac{4}{12}=\dfrac{1}{3}\)

\(\text{Total lite per hour}=\dfrac{1}{3}\times 240=80\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-25-Dividing in a given ratio

Ratio, SM-Bank 039 MC

A Christmas pudding recipe uses 3 cups of sugar for every 4 cups of sultanas.

Select the correct combination of sugar and sultanas for this recipe.

  1. \(\dfrac{1}{3}\ \text{cup of sugar, }\dfrac{1}{4}\ \text{cup of sultanas}\)
  2. \(1\ \text{cup of sugar, }1.5\ \text{cups of sultanas}\)
  3. \(1.5\ \text{cups of sugar, }2\ \text{cups of sultanas}\)
  4. \(4\ \text{cups of sugar, }5\ \text{cups of sultanas}\)
Show Answers Only

\(C\)

Show Worked Solution
\(\text{Ratio}\) \(= 3:4\)
  \(=1.5:2\)

 

\(\therefore\ 1.5\ \text{cups of sugar, }2\text{ cups of sultanas}\)

\(\text{is in the correct ratio.}\)

 
\(\Rightarrow C\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-15-Simplifying ratios, smc-4608-20-Word problems ratio

Ratio, SM-Bank 038

Damon buys 25 kilograms of salt for his pool for $33.75.

The salt can be purchased in 1 kilogram bags.

How much does 9 kilograms of salt cost?  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\($12.15\)

Show Worked Solution

\(\text{C}\text{ost of 1 kilogram}\)

\(=\dfrac{33.75}{25}\)

\(= $1.35\)
 

\(\therefore\ \text{C}\text{ost of 9 kilograms}\)

\(= 9\times 1.35\)

\(= $12.15\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-30-Unitary method ratio

Ratio, SM-Bank 037 MC

Tony is making a fruit cake.

The recipe says he needs 3 cups of sultanas for every 5 cups of flour.

If 2.5 cups of flour are used, how many cups of sultanas are needed?
 

  1. \(0.5\ \text{cups}\)
  2. \(1.5\ \text{cups}\)
  3. \(2.5\ \text{cups}\)
  4. \(4.5\ \text{cups}\)
Show Answers Only

\(B\)

Show Worked Solution

\(\text{Strategy 1:}\)

\(2.5\ \text{ is half of }\ 5\ \text{cups of flour, therefore half of}\)

\(3\ \text{cups of sultanas is required.}\)

\(\rightarrow\ 1.5\text{ cups of sultanas needed.}\)

 

\(\text{Strategy 2:}\)

\(\text{Let}\ \ n = \text{cups of sultanas needed}\)

\(\dfrac{n}{2.5}\) \(=\dfrac{3}{5}\)
\(\therefore \ n\) \(=\dfrac{3\times 2.5}{5}\)
  \(=1.5\ \text{cups}\)

 
\(\Rightarrow\ B\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-25-Dividing in a given ratio

Ratio, SM-Bank 035 MC

The actual body length of a beetle Brad has caught is 24 mm.

A scale drawing of the beetle is shown below.

What scale is used in the drawing?

  1. \(1 \text{cm represents } 5\ \text{mm}\)
  2. \(1 \text{cm represents } 2\ \text{mm}\)
  3. \(2 \text{cm represents } 1\ \text{mm}\)
  4. \(5 \text{cm represents } 1\ \text{mm}\)
Show Answers Only

\(B\)

Show Worked Solution

\(\text{Scale:}\)

\(12\ \text{cm}: 24\ \text{mm}\) \(=120\ \text{mm}: 24\ \text{mm}=5:1\)

  
\(\text{In the options given, the ratio of}\ 5 : 1\ \text{occurs when}\)

\(\text{10 mm represents 2 mm}\ \textbf{OR}\ \text{when 1 cm represents 2 mm}\)
  

\(\Rightarrow B\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 034 MC

This picture shows a stone vase.
 

 
The picture is 2 cm high. The actual vase is 40 cm high.

What scale is used in the picture?

  1. \(\text{2 cm represents 20 cm}\)
  2. \(\text{4 cm represents 40 cm}\)
  3. \(\text{1 cm represents 2 cm}\)
  4. \(\text{1 cm represents 20 cm}\)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Scale:}\ \ 2\ \text{cm}\ :\ 40\ \text{cm}\)

\(\rightarrow \text{Divide both sides by }2\)

\(\text{Scale:}\ \ 1\ \text{cm}\ :\ 20\ \text{cm}\)

 
\(\Rightarrow D\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 033 MC

Two places are 5.4 cm apart on a map.

On the map 1 cm represents 4 km.

What is the actual distance between the two places?

  1. \(1.08\ \text{km}\)
  2. \(10.8\ \text{km}\)
  3. \(21.6\ \text{km}\)
  4. \(43.4\ \text{km}\)
Show Answers Only

\(C\)

Show Worked Solution
\(\text{Actual distance}\) \(=5.4\times 4\)
  \(=21.6\ \text{km}\)

 
\(\Rightarrow C\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 032 MC

Shelley and Carly collect dolls.

The ratio of the number of dolls Shelley owns compared to Carly is  3 : 2.

Shelley owns 12 dolls.

How many dolls does Carly own?

  1. \(2\)
  2. \(6\)
  3. \(8\)
  4. \(18\)
Show Answers Only

\(C\)

Show Worked Solution

\(\text{Shelley’s dolls represents 3 parts}\)

\(3\ \text{parts}\) \(=12\)
\(1\ \text{part}\) \(=\dfrac{12}{3}=4\)

    
\(\text{Carly’s dolls represents 2 parts}\)

\(=2\times 4=8\)
 

\(\therefore\ \text{There Carly owns}\ 8\ \text{dolls.}\)
 

\(\Rightarrow C\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-30-Unitary method ratio

Ratio, SM-Bank 031

Jordan has 4 times as many blue pencils as black pencils.

Altogether he has 90 pencils.

How many blue pencils does he have?  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(72\ \text{blue pencils}\)

Show Worked Solution

\(\text{Method 1}\)

\(\text{Ratio of blue to black}=4:1\)

\(\text{Total parts}=4+1=5\)
  

\(\text{Fraction blue}=\dfrac{4}{5}\)

\(\text{Number of blue pencils}=\dfrac{4}{5}\times 90=72\)
  

\(\text{Method 2 (Advanced)}\)

\(\text{Let}\ \ x = \text{the number of black pencils}\)

\(\text{Then the number of blue pencils}=4x\)

\(\text{Total pencils }= x + 4x\) \(=5x\)
\(\rightarrow\ 5x\) \(= 90\)
\(x\) \(=\dfrac{90}{5}= 18\)

 

\(\therefore \ \text{The number of blue pencils}\)

\(=90-18= 72\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-25-Dividing in a given ratio, smc-4608-30-Unitary method ratio

Ratio, SM-Bank 030 MC

A school has 360 students.

The ratio of boys to girls is 4 to 6.

How many boys attend the school?

  1. \(90\)
  2. \(144\)
  3. \(216\)
  4. \(240\)
Show Answers Only

\(B\)

Show Worked Solution

\(\text{Total students}=4+6=10\)
 

\(\text{Fraction of boys}=\dfrac{4}{10}=\dfrac{2}{5}\)

\(\text{Boys}=\dfrac{2}{5}\times 360=144\)
  

\(\Rightarrow B\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-25-Dividing in a given ratio

Ratio, SM-Bank 029 MC

A television broadcasting tower is 800 metres high.

A model of the tower is built with a scale of  1 : 4000.

What is the height of the model?

  1. \(5\ \text{cm}\)
  2. \(20\ \text{cm}\)
  3. \(200\ \text{cm}\)
  4. \(320\ \text{cm}\)
Show Answers Only

\(B\)

Show Worked Solution
\(\text{Model height}\) \(=\dfrac{800}{4000}\)
  \(= 0.2\ \text{m}\)
  \(= 20\ \text{cm}\)

 
\(\Rightarrow B\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-35-Scale

Ratio, SM-Bank 028 MC

A little athletics club is established in a town.

In the first week, 5 girls and 6 boys joined the club.

In the second week, another 4 boys and some more girls joined the club.

The number of girls in the club was now double the number of boys.

How many girls joined the club in the second week?

  1. \(7\)
  2. \(15\)
  3. \(17\)
  4. \(20\)
Show Answers Only

\(B\)

Show Worked Solution

\(\text{1st week}\rightarrow 6\ \text{boys.}\)

\(\text{2nd week }\rightarrow 6+4 = 10\ \text{boys.}\)

\(\text{Total girls in 2nd week.}\)

\(= 2\times 10\)

\(= 20\)
 

\(\therefore\ \text{Girls joining in 2nd week.}\)

\(= 20-5\)

\(= 15\)
 

\(\Rightarrow B\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-25-Dividing in a given ratio

Ratio, SM-Bank 027 MC

Muriel made a batch of cookies.
 

 
Each cookie had 4 chocolate chips and 3 jelly snakes on it.

Muriel used 39 jelly snakes in the batch of cookies.

How many chocolate chips did she use?

  1. \(13\)
  2. \(26\)
  3. \(52\)
  4. \(78\)
Show Answers Only

\(C\)

Show Worked Solution

\(\text{Number of cookies made}\)

\(=\dfrac{39}{3}\)

\(=13\)

\(\therefore\ \text{Chocolate chips used}\)

\(=13\times 4\)

\(=52\)

 
\(\Rightarrow C\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-25-Dividing in a given ratio

Ratio, SM-Bank 026

It is known that one of the angles in a triangle is \(120^{\circ}\).

Calculate the size of the other 2 angles if they are in the ratio \(2:3\).  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(24^{\circ}\ \text{and}\ 36^{\circ}\)

Show Worked Solution

\(\text{Angle sum of a triangle}=180^{\circ}\)

\(\therefore\ \text{Remaining angles}=180-120=60^{\circ}\)

\(\text{Total parts remaining angles}=2+3=5\)    

\(\text{1st angle}=\dfrac{2}{5}\times 60=24\)

\(\text{2nd angle}=\dfrac{3}{5}\times 60=36\)
    

\(\therefore\ \text{The remaining angles are}\ 24^{\circ}\ \text{and}\ 36^{\circ}.\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-30-Unitary method ratio

Ratio, SM-Bank 025

The ratio of the angles in a triangle is 1:2:5.

Calculate the sizes of all three angles?  (2 marks)

Show Answers Only

\(22.5^{\circ}, 45^{\circ} \text{ and}\ 112.5^{\circ}\)

Show Worked Solution

\(\text{Total parts}=1+2+5=8\ \text{and the angle sum of a triangle}=180^{\circ}\)

\(\dfrac{1}{8}\times 180\) \(=22.5\)
\(\dfrac{2}{8}\times 180\) \(=45\)
\(\dfrac{5}{8}\times 180\) \(=112.5\)

    
\(\therefore\ \text{The angles in the triangle are }22.5^{\circ}, 45^{\circ} \text{ and}\ 112.5^{\circ}\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-25-Dividing in a given ratio

Ratio, SM-Bank 024

Joe and Andrew are cleaning fish. For every 4 fish that Joe cleans, Andrew cleans 7.

If Joe cleaned 36 fish, how many did Andrew clean?  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(63 \text{ fish}\)

Show Worked Solution

\(\text{Joe’s cleaned fish represents 4 parts}\)

\(4\ \text{parts}\) \(=36\)
\(1\ \text{part}\) \(=\dfrac{36}{4}=9\)

    
\(\text{Andrew’s cleaned fish represents 7 parts}\)

\(=9\times 7=63\)
 

\(\therefore\ \text{Andrew cleaned}\ 63\ \text{fish.}\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-30-Unitary method ratio

Ratio, SM-Bank 023

This year there are 108 students in Year 8 and the ratio of Year 7 students to Year 8 students is 8:9.

Use this information to calculate the number of students in Year 7 this year.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(96 \text{ students in Year 7}\)

Show Worked Solution

\(\text{Year 8 represents 9 parts}\)

\(9\ \text{parts}\) \(=108\)
\(1\ \text{part}\) \(=\dfrac{108}{9}=12\)

    
\(\text{Year 7 represents 8 parts}\)

\(=12\times 8=96\)
 

\(\therefore\ \text{There are}\ 96\ \text{students in Year 7.}\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-30-Unitary method ratio

Ratio, SM-Bank 018

The ratio of kilograms of bananas to apples at the fruit shop is \(11:5\).

  1. What fraction of the fruit is bananas?  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. If there are 128 kilograms of bananas and apples altogether, how many kilograms of bananas are there?  (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\dfrac{11}{16}\)

b.    \(88\ \text{kg of bananas}\)

Show Worked Solution

a.    \(\text{Total fruits}=11+5=16\)

\(\text{Fraction bananas}=\dfrac{11}{16}\)
 

b.   
\(\text{Kilograms of bananas}\) \(=\dfrac{11}{16}\times 128\)
    \(=88\)

 
\(\therefore\ \text{There are }88\ \text{kgs of bananas.}\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-25-Dividing in a given ratio

Ratio, SM-Bank 017

The ratio of dogs to cats in an animal rescue shelter is \(5:4\).

  1. What fraction of the animals are dogs?  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. What fraction of the animals are cats?  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. If there are 36 animals in the shelter, how many are dogs?  (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\dfrac{5}{9}\)

b.    \(\dfrac{4}{9}\)

c.    \(20\ \text{dogs}\)

Show Worked Solution

a.    \(\text{Total animals}=5+4=9\)

\(\text{Fraction dogs}=\dfrac{5}{9}\)
 

b.    \(\text{Fraction cats}=\dfrac{4}{9}\)

 

c.   
\(\text{Number of dogs}\) \(=\dfrac{5}{9}\times 36\)
    \(=20\)

 
\(\therefore\ \text{There are }20\ \text{dogs in the shelter.}\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-20-Word problems ratio, smc-4608-25-Dividing in a given ratio

Ratio, SM-Bank 016

Maude has 55 cents in coins and Will has $2.70 in coins.

  1. Write Maude's money as a ratio of Will's money in cents.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Express the ratio in simplest form.  (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(55:270\) 

b.    \(11:54\)

Show Worked Solution
a.    \(55\ \text{cents to}\ $2.70\) \(=55:270\)

 

b.    \(55:270\) \(=\dfrac{55}{5}:\dfrac{270}{5}\)
    \(=11:54\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-15-Simplifying ratios, smc-4608-20-Word problems ratio

Ratio, SM-Bank 003

James was building a lego house and has the pieces below left over.

Calculate:

  1. the ratio of blue bricks to yellow.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. the ratio of pink bricks to the total leftover bricks.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. the ratio of yellow bricks to other leftover bricks.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(4:5\)

b.    \(2:11\)

c.    \(5:6\)

Show Worked Solution

a.    \(\text{Blue}:\text{Yellow}=4:5\)

b.    \(\text{Total Bricks}=2+4+5=11\)

\(\text{Pink}:\text{Total}=2:11\)

c.    \(\text{Total other bricks}=2+4=6\)

\(\text{Yellow}:\text{Other}=5:6\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-10-Simple ratios, smc-4608-20-Word problems ratio

Ratio, SM-Bank 002

A fruit bowl contains 8 apples, 7 bananas, 1 pear and 13 oranges.

Calculate:

  1. the ratio of apples to oranges.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. the ratio of oranges to the total pieces of fruit in the bowl.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. the ratio of pears to other pieces of fruit.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(8:13\)

b.    \(13:29\)

c.    \(1:28\)

Show Worked Solution

a.    \(\text{Apples}:\text{Oranges}=8:13\)

b.    \(\text{Total Fruit}=8+7+1+13=29\)

\(\text{Oranges}:\text{Total}=13:29\)

c.    \(\text{Total other fruit}=8+7+13=28\)

\(\text{Pear}:\text{Other}=1:28\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-10-Simple ratios, smc-4608-20-Word problems ratio

Ratio, SM-Bank 001

A bag contains 3 red marbles, 4 blue marbles and 8 white marbles.

Calculate:

  1. the ratio of red marbles to blue marbles.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. the ratio of white marbles to the total number of marbles.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. the ratio of blue marbles to other colours.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(3:4\)

b.    \(8:15\)

c.    \(4:11\)

Show Worked Solution

a.    \(\text{Red}:\text{Blue}=3:4\)

b.    \(\text{Total marbles}=3+4+8=15\)

\(\text{White}:\text{Total}=8:15\)

c.    \(\text{Total other marbles}=3+8=11\)

\(\text{Blue}:\text{Other}=4:11\)

Filed Under: Ratio Tagged With: num-title-ct-core, smc-4608-10-Simple ratios, smc-4608-20-Word problems ratio

Copyright © 2014–2025 SmarterEd.com.au · Log in