SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Properties of Geometric Figures, SM-Bank 011

In the diagram, \(AB\) is parallel to \(DE\).
 

  1. On the diagram, label the alternate angles to \(a^{\circ}\) and \(b^{\circ}\).   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

  2. Using part (a), show that the sum of internal angles of a triangle equals 180°.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    
     

b.    \(DE\ \text{is a straight line.}\)

\(a^{\circ} + b^{\circ} + c^{\circ} = 180^{\circ}\ \ \text{(180° in a straight line)}\)

\(\therefore \ \text{Angle sum of}\ \Delta = a^{\circ} + b^{\circ} + c^{\circ} = 180^{\circ}\)

Show Worked Solution

a.    
       

b.    \(DE\ \text{is a straight line.}\)

\(a^{\circ} + b^{\circ} + c^{\circ} = 180^{\circ}\ \ \text{(180° in a straight line)}\)

\(\therefore \ \text{Angle sum of}\ \Delta = a^{\circ} + b^{\circ} + c^{\circ} = 180^{\circ}\)

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-50-Other problems, smc-5008-60-Proofs

Properties of Geometrical Figures, SM-Bank 017

The diagram below shows an isosceles triangle.
 

Determine the value of \(x^{\circ}\), giving reasons for your answer.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(40^{\circ}\)

Show Worked Solution

\(\text{Isosceles triangle}\ \ \Rightarrow\ \ \text{angles opposite equal sides are equal}\)

\(x^{\circ}\) \(=180-(2 \times 70)\ \ \text{(180° in triangle)} \)  
  \(=180-140\)  
  \(=40^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-50-Other problems

Properties of Geometrical Figures, SM-Bank 016

The diagram below shows an isosceles triangle.
 

Determine the value of \(x^{\circ}\), giving reasons for your answer.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(110^{\circ}\)

Show Worked Solution

\(\text{Isosceles triangle}\ \ \Rightarrow\ \ \text{angles opposite equal sides are equal}\)

\(x^{\circ}\) \(=180-(2 \times 35)\ \ \text{(180° in triangle)} \)  
  \(=110^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-50-Other problems

Properties of Geometrical Figures, SM-Bank 015

The diagram below shows an isosceles triangle.
 

Determine the value of \(a^{\circ}\), giving reasons for your answer.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(71^{\circ}\)

Show Worked Solution

\(\text{Isosceles triangle}\ \ \Rightarrow\ \ \text{angles opposite equal sides are equal}\)

\(2a^{\circ}\) \(=180-38\ \ \text{(180° in triangle)} \)  
\(a^{\circ}\) \(=\dfrac{142}{2}\)  
  \(=71^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-50-Other problems

Properties of Geometrical Figures, SM-Bank 014

The diagram below shows an isosceles triangle.
 

Determine the value of \(x^{\circ}\), giving reasons for your answer.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(59^{\circ}\)

Show Worked Solution

\(\text{Isosceles triangle}\ \ \Rightarrow\ \ \text{angles opposite equal sides are equal}\)

\(2x^{\circ}\) \(=180-62\ \ \text{(180° in triangle)} \)  
\(x^{\circ}\) \(=\dfrac{118}{2}\)  
  \(=59^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-50-Other problems

Properties of Geometrical Figures, SM-Bank 013

In the right-angled triangle below, determine the value of \(x^{\circ}\).   (2 marks)
 

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(57^{\circ}\)

Show Worked Solution

\(\text{Right-angle}\ = 90^{\circ}\)

\(x^{\circ}\) \(=180-(90+72)\ \ \text{(180° in triangle)} \)  
  \(=18^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-50-Other problems

Properties of Geometrical Figures, SM-Bank 012

In the right-angled triangle below, determine the value of \(x^{\circ}\).   (2 marks)
 

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(57^{\circ}\)

Show Worked Solution

\(\text{Right-angle}\ = 90^{\circ}\)

\(x^{\circ}\) \(=180-(90+33)\ \ \text{(180° in triangle)} \)  
  \(=57^{\circ}\)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-50-Other problems

Properties of Geometrical Figures, SM-Bank 004 MC

A triangle is divided into 2 parts by a straight line.

The angles are then labelled.
 

Which statement is true about the sum of angles?

  1. `b + c + d = 180^@`
  2. `c + d + e = 360^@`
  3. `a + b + f + g = 360^@`
  4. `d + e + f + g = 180^@`
Show Answers Only

`C`

Show Worked Solution

`text(Consider each option:)`

`text(Option A:)\ \ b + c + d != 180\ \ => \ b+c = 180^@`

`text(Option B:)\ \ c + d + e != 360^@\ \ => \ c + d + e = 180^@\ \ text{(angle sum of triangle)}`

`text(Option C:)\ \ a + b + f + g = 360^@`

  `=>\ text(Correct since the angle sum of a quadrilateral = 360°)`

`text(Option D:)\ \ d + e + f + g != 180\ \ => \ e + f  = 180^@`

`=> C`

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-50-Other problems

Copyright © 2014–2025 SmarterEd.com.au · Log in