Using a 5-number summary of the data represented in this graph, or otherwise, determine
- the range (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
- the interquartile range (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Using a 5-number summary of the data represented in this graph, or otherwise, determine
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. \(\text{Range}\ = 7 \)
ii. \(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 6-1=5 \)
i. \(\text{Range}\ = 7-0=7 \)
ii.
\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \ \text{Max} \ \\
\hline
\rule{0pt}{2.5ex} 0 \rule[-1ex]{0pt}{0pt} & 1 & 4 & 6 & 7 \\
\hline
\end{array}
\(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 6-1=5 \)
Using a 5-number summary of the data represented in this graph, or otherwise, determine
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. \(\text{Median}\ = 2 \)
ii. \(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 5-1=4 \)
i. \(\text{15 data points}\ \Rightarrow \ \text{Median = 8th data point}\)
\(\text{Median}\ = 2 \)
ii.
\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \ \text{Max} \ \\
\hline
\rule{0pt}{2.5ex} 0 \rule[-1ex]{0pt}{0pt} & 1 & 2 & 5 & 7 \\
\hline
\end{array}
\(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 5-1=4 \)