SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Box-Plots and 5-Number Summary, SM-Bank 016

Ellyse recorded the number of wickets she took in the first seven games of the cricket season, which are as follows:

\(3, \ 5, \ 0, \ 8, \ 1, \ 2, \ 2 \)

  1. Complete the 5-number summary table of Ellyse's results below.   (2 marks)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}   \rule[-1ex]{0pt}{0pt} &  &  &  &  \\
\hline
\end{array}

--- 0 WORK AREA LINES (style=lined) ---

  1. Draw a box plot, using the number line below for reference, that displays Ellyse's results.   (2 marks)
     

--- 0 WORK AREA LINES (style=lined) ---

  1. Describe the skew of Ellyse's results.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(\text{Ordering the data:}\ 0, \ 1, \ 2, \ 2, \ 3, \ 5, \ 8\)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex} 0  \rule[-1ex]{0pt}{0pt} & 1 & 2 & 5 & 8 \\
\hline
\end{array}

ii.   
     

iii.   \(\text{Positively skewed}\)

Show Worked Solution

i.    \(\text{Ordering the data:}\ 0, \ 1, \ 2, \ 2, \ 3, \ 5, \ 8\)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex} 0  \rule[-1ex]{0pt}{0pt} & 1 & 2 & 5 & 8 \\
\hline
\end{array}

ii.   
     

iii.   \(\text{Positively skewed}\)

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-10-5-number (odd values), smc-5021-70-Skew, smc-5021-75-Draw box plot

Box Plots and 5-Number Summary, SM-Bank 015

Eli sat 22 Maths quizzes throughout year 8 and her results were recorded in the 5-number summary below.

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  30 \rule[-1ex]{0pt}{0pt} & 50 & 60 & 70 & 80 \\
\hline
\end{array}

  1. Using the number line below as reference, draw a box plot that displays Eli's results.   (2 marks)
     

--- 0 WORK AREA LINES (style=lined) ---

  1. Describe the skew of Eli's results.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    
       

ii.    \(\text{Negatively skewed (slightly)}\)

Show Worked Solution

i.    
       

ii.    \(\text{Negatively skewed (slightly)}\)

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-50-Box plot (single), smc-5021-70-Skew, smc-5021-75-Draw box plot

Box Plots and 5-Number Summary, SM-Bank 014

The test results in English and Mathematics for a class were recorded and displayed in the box plots.
 

  1. What is the interquartile range for English?   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Compare and contrast the two data sets by referring to the skewness of the distributions and the measures of their centres and spread.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    `text{IQR}_text{(English)}\ = 80-50=30`

ii.  `text(Skewness)`

  • `text(English has greater negative skew)`
  • `text(Maths is more normally distributed)`

`text(Location and Spread)`

  • `text(English has a range of 85, Maths has 40.)`
  • `text{English has larger IQR than Maths (30 vs 15)}`
  • `text{Maths’ median (75) is higher than English (70)}`
  • `text{Same upper quartile marks (80)}`
  • `text(English has highest and lowest individual mark)`
Show Worked Solution

i.    `text{IQR}_text{(English)}\ = 80-50=30`

 

♦ Mean mark (ii) 35%
COMMENT: The best answers use the correct language of location and spread such as mean, median, interquartile range, standard deviation and skewness.

ii.  `text(Skewness)`

  • `text(English has greater negative skew)`
  • `text(Maths is more normally distributed)`

`text(Location and Spread)`

  • `text(English has a range of 85, Maths has 40.)`
  • `text{English has larger IQR than Maths (30 vs 15)}`
  • `text{Maths’ median (75) is higher than English (70)}`
  • `text{Same upper quartile marks (80)}`
  • `text(English has highest and lowest individual mark)`

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-60-Box plots (parallel), smc-5021-70-Skew

Box Plots and 5-Number Summary, SM-Bank 013

Terry and Kim each sat twenty class tests. Terry’s results on the tests are displayed in the box plot shown in part (i).

  1. Kim’s  5-number summary for the tests is  67,  69,  71,  73,  75.

     

    Draw a box plot to display Kim’s results below that of Terry’s results.   (1 mark)
     
       

  2. What percentage of Terry’s results were below 69?     (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. Describe the skew of Kim's results.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only
i.    

ii.  `text(50%)`
 

iii.  `text{By inspection of box plot: Evenly skewed}`

Show Worked Solution
i. 

 
ii.
  `text(50%)`
 

iii.  `text{By inspection of box plot: Evenly skewed}`

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-60-Box plots (parallel), smc-5021-70-Skew, smc-5021-75-Draw box plot

Box Plots and 5-Number Summary, SM-Bank 012 MC

This box plot represents a set of scores.
 

What is the interquartile range of this set of scores?

  1. 1
  2. 2
  3. 3
  4. 5
Show Answers Only

`C`

Show Worked Solution

`text{Q}_1 = 8, \ text{Q}_3 = 11`

`text{IQR}` `= text{Q}_3-text{Q}_1`
  `= 11-8`
  `= 3`

 
`=> C`

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-20-Find IQR, smc-5021-50-Box plot (single)

Box Plots and 5-Number, SM-Bank 011

Using a 5-number summary of the data represented in this graph, or otherwise, determine

  1. the range   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. the interquartile range   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

i.   \(\text{Range}\ = 7 \)

ii.   \(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 6-1=5 \)

Show Worked Solution

i.   \(\text{Range}\ = 7-0=7 \)
  

ii.   
         

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  0 \rule[-1ex]{0pt}{0pt} & 1 & 4 & 6 & 7 \\
\hline
\end{array}

\(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 6-1=5 \)

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-10-5-number (odd values), smc-5021-20-Find IQR, smc-5021-25-Find range, smc-5021-40-Dot plot

Box Plots and 5-Number, SM-Bank 010

Using a 5-number summary of the data represented in this graph, or otherwise, determine

  1. the median   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. the interquartile range   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

i.   \(\text{Median}\ = 2 \)

ii.   \(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 5-1=4 \)

Show Worked Solution

i.   \(\text{15 data points}\ \Rightarrow \ \text{Median = 8th data point}\)

\(\text{Median}\ = 2 \)
  

ii.   
           

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  0 \rule[-1ex]{0pt}{0pt} & 1 & 2 & 5 & 7 \\
\hline
\end{array}

\(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 5-1=4 \)

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-10-5-number (odd values), smc-5021-18-Find median, smc-5021-20-Find IQR, smc-5021-40-Dot plot

Box Plots and 5-Number, SM-Bank 009

Yoyo was practicing his cello for an orchestra audition and the data set below records the number of hours he practiced each day over a 10-day period.

\(7.6, \ 12.2, \ 8.4, \ 7.8, \ 8.8, \ 9.3, \ 11.9, \ 7.0, \ 8.2, \ 10.4\)

Using a 5-number summary of this dataset, or otherwise, determine

  1. the range   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. the interquartile range   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(\text{Range}\ = 12.2-7.0 = 5.2 \)
 

ii.   \(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 10.4-7.8=2.6 \)

Show Worked Solution

i.    \(\text{Placing data values in order:}\)

\(7.0, \ 7.6, \ 7.8, \ 8.2, \ 8.4, \ 8.8, \ 9.3, \ 10.4, \ 11.9, \ 12.2\)

\(\text{Range}\ = 12.2-7.0 = 5.2 \)
 

ii.    \(\underbrace{7.0}_{\text{min}}, \ 7.7, \ \underbrace{7.8}_{Q1}, \ 8.2, \ \underbrace{8.4, \ 8.8}_{Q2}, \ 9.3, \ \underbrace{10.4}_{Q3}, \ 11.9, \ \underbrace{12.2}_{\text{max}}\)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  7.0 \rule[-1ex]{0pt}{0pt} & 7.8 & 8.6 & 10.4 & 12.2 \\
\hline
\end{array}

\(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 10.4-7.8=2.6 \)

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-15-5 number (even values), smc-5021-20-Find IQR, smc-5021-25-Find range

Box Plots and 5-Number, SM-Bank 008

Matt records the number of times he takes his dog Max for a walk each month. The data set below records the months January to August.

\(21, \ 24, \ 28, \ 22, \ 15, \ 12, \ 13, \ 17\)

Using a 5-number summary of this dataset, or otherwise, determine

  1. the median   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. the interquartile range   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(\text{Median}\ = \dfrac{17+21}{2} = 19 \)
 

ii.    \(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 23-14=9 \)

Show Worked Solution

i.    \(\text{Placing data values in order:}\)

\(12, \ 13, \ 15, \ 17, \ 21, \ 22, \ 24, \ 28 \)

\(\text{Median}\ = \dfrac{17+21}{2} = 19 \)
 

ii.    \(\underbrace{12}_{\text{min}}, \underbrace{13+15}_{Q1}, \ \underbrace{17+21}_{Q2}, \ \underbrace{22, \ 24}_{Q3}, \ \underbrace{28}_{\text{max}}\)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  12 \rule[-1ex]{0pt}{0pt} & 14 & 19 & 23 & 28 \\
\hline
\end{array}

\(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 23-14=9 \)

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-15-5 number (even values), smc-5021-18-Find median, smc-5021-20-Find IQR

Box Plots and 5-Number, SM-Bank 007

The data set below consists of 8 data points.

\(7.0, \ 7.4, \ 8.1, \ 9.3, \ 9.5, \ 10.7, \ 11.1, \ 12.9 \)

Complete the 5-number summary table of the data set below.   (2 marks)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} & \ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \ \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}   \rule[-1ex]{0pt}{0pt} &  \\
\hline
\end{array}

Show Answers Only

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  7.0 \rule[-1ex]{0pt}{0pt} & 7.75 & 9.4 & 10.9 & 12.9 \\
\hline
\end{array}

Show Worked Solution

\(\underbrace{7.0}_{\text{min}}, \underbrace{7.4,\ 8.1}_{Q1}, \ \underbrace{9.3, \ 9.5}_{Q2}, \ \underbrace{10.7, \ 11.1}_{Q3}, \ \underbrace{12.9}_{\text{max}}\)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  7.0 \rule[-1ex]{0pt}{0pt} & 7.75 & 9.4 & 10.9 & 12.9 \\
\hline
\end{array}

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-15-5 number (even values)

Box Plots and 5-Number, SM-Bank 006

Rocket Reddy played 10 full seasons of first grade rugby league and recorded the number of tries he scored each season.

\(13, \ 5, \ 11, \ 2, \ 10, \ 13, \ 5, \ 7, \ 8, \ 3\)

Complete the 5-number summary table of Rocket Reddy's data below.   (2 marks)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} & \ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \ \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}   \rule[-1ex]{0pt}{0pt} &  \\
\hline
\end{array}

Show Answers Only

\(\underbrace{2}_{\text{min}}, \ 3, \underbrace{5}_{Q1}, \ 5, \ \underbrace{7, \ 8}_{Q2}, \ 10, \ \underbrace{11}_{Q3}, \ 13, \ \underbrace{13}_{\text{max}}\)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  2 \rule[-1ex]{0pt}{0pt} & 5 & 7.5 & 11 & 13 \\
\hline
\end{array}

Show Worked Solution

\(\text{Place data points in order:}\)

\(2, \ 3, \ 5, \ 5, \ 7, \ 8, \ 10, \ 11, \ 13, \ 13\)

\(\underbrace{2}_{\text{min}}, \ 3, \underbrace{5}_{Q1}, \ 5, \ \underbrace{7, \ 8}_{Q2}, \ 10, \ \underbrace{11}_{Q3}, \ 13, \ \underbrace{13}_{\text{max}}\)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  2 \rule[-1ex]{0pt}{0pt} & 5 & 7.5 & 11 & 13 \\
\hline
\end{array}

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-15-5 number (even values)

Box Plots and 5-Number, SM-Bank 005

Le Bron plays basketball and records the number of free throws he shoots in the first nine games of the season.

\(12, \ 8, \ 4, \ 15, \ 13, \ 7, \ 8, \ 3, \ 10\)

Using a 5-number summary of this dataset, or otherwise, determine

  1. the median   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. the interquartile range   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(\text{Median}\ = 8\)

ii.    \(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 5-2 =3\)

Show Worked Solution

i.    \(\text{Ordering the data values:}\)

\(3, \ 4, \ 7, \ 8, \ 8, \ 10, \ 12, \ 13, \ 15\)

\(\text{Median}\ = 8\)
 

ii.    \(\underbrace{3}_{\text{min}}, \ \underbrace{4, \ 7}_{Q1}, \ 8, \ \underbrace{8}_{Q2}, \ 10, \ \underbrace{12, \ 13}_{Q3}, \ \underbrace{15}_{\text{max}}\)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  3 \rule[-1ex]{0pt}{0pt} & 5.5 & 8 & 12.5 & 15 \\
\hline
\end{array}

\(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 12.5-5.5 =7\)

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-10-5-number (odd values), smc-5021-18-Find median, smc-5021-20-Find IQR

Box Plots and 5-Number, SM-Bank 004

Robert records the total goals scored in each of the first 11 matches of his favourite soccer team.

\(3, \ 5, \ 1, \ 2, \ 2, \ 7, \ 6, \ 4, \ 1, \ 5, \ 3\)

Using a 5-number summary of this dataset, or otherwise, determine

  1. the range   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. the interquartile range   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(\text{Range}\ = 7-1=6\)

ii.   \(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 5-2 =3\)

Show Worked Solution

i.    \(\text{Ordering the data values:}\)

\(1, \ 1, \ 2, \ 2, \ 3, \ 3, \ 4, \ 5, \ 5, \ 6, \ 7\)

\(\text{Range}\ = 7-1=6\)
 

ii.   \(\underbrace{1}_{\text{min}}, 1, \ \underbrace{2}_{Q1}, \ 2, \ 3, \ \underbrace{3}_{Q2}, \ 4, \ 5, \ \underbrace{5}_{Q3}, \ 6, \ \underbrace{7}_{\text{max}}\)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  1 \rule[-1ex]{0pt}{0pt} & 2 & 3 & 5 & 7 \\
\hline
\end{array}

\(\text{IQR}\ = \text{Q}_3-\text{Q}_1 = 5-2 =3\)

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-10-5-number (odd values), smc-5021-20-Find IQR, smc-5021-25-Find range

Box Plots and 5-Number, SM-Bank 003

The numerical data set below is made up of 9 data points.

\(1.1, \ 1.3, \ 1.3, \ 1.3, \ 1.6, \ 1.7, \ 1.9, \ 2.1, \ 2.1\)

Complete 5-number summary table below.   (2 marks)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} & \ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \ \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}   \rule[-1ex]{0pt}{0pt} &  \\
\hline
\end{array}

Show Answers Only

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  1.1 \rule[-1ex]{0pt}{0pt} & 1.3 & 1.6 & 2.0 & 2.1 \\
\hline
\end{array}

Show Worked Solution

\(\underbrace{1.1}_{\text{min}}, \ \underbrace{1.3, \ 1.3}_{Q1}, \ 1.3, \ \underbrace{1.6}_{Q2}, \ 13, \ \underbrace{1.9, \ 2.1}_{Q3}, \ \underbrace{2.1}_{\text{max}}\)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  1.1 \rule[-1ex]{0pt}{0pt} & 1.3 & 1.6 & 2.0 & 2.1 \\
\hline
\end{array}

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-10-5-number (odd values)

Box Plots and 5-Number, SM-Bank 002

The numerical data set below is made up of 7 data points.

\(5, \ 7, \ 7, \ 10, \ 13, \ 15, \ 19\)

Complete 5-number summary table below.   (2 marks)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} & \ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \ \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}   \rule[-1ex]{0pt}{0pt} &  \\
\hline
\end{array}

Show Answers Only

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  5 \rule[-1ex]{0pt}{0pt} & 7 & 10 & 15 & 19 \\
\hline
\end{array}

Show Worked Solution

\(\underbrace{5}_{\text{min}}, \ \underbrace{7}_{Q1}, \ 7, \ \underbrace{10}_{Q2}, \ 13, \ \underbrace{15}_{Q3}, \ \underbrace{19}_{\text{max}}\)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  5 \rule[-1ex]{0pt}{0pt} & 7 & 10 & 15 & 19 \\
\hline
\end{array}

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-10-5-number (odd values)

Box Plots and 5-Number, SM-Bank 001

The numerical data set below is made up of 11 data points.

\(2, \ 3, \ 3, \ 5, \ 8, \ 10, \ 11, \ 11, \ 12, \ 14, \ 16\)

Complete 5-number summary table below.   (2 marks)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} & \ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \ \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}   \rule[-1ex]{0pt}{0pt} &  \\
\hline
\end{array}

Show Answers Only

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  2 \rule[-1ex]{0pt}{0pt} & 3 & 10 & 12 & 16 \\
\hline
\end{array}

Show Worked Solution

\(\underbrace{2}_{\text{min}}, \ 3, \ \underbrace{3}_{Q1}, \ 5, \ 8, \ \underbrace{10}_{Q2}, \ 11, \ 11, \ \underbrace{12}_{Q3}, \ 14, \ \underbrace{16}_{\text{max}}\)

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \text{Min} \ \rule[-1ex]{0pt}{0pt} &\ \ \text{Q}_1 \ \ \ &\ \ \text{Q}_2 \ \ \ &\ \ \text{Q}_3 \ \ \ & \  \text{Max} \ \\
\hline
\rule{0pt}{2.5ex}  2 \rule[-1ex]{0pt}{0pt} & 3 & 10 & 12 & 16 \\
\hline
\end{array}

Filed Under: Box Plots and 5-Number Summary Tagged With: num-title-ct-corea, smc-5021-10-5-number (odd values)

Statistics, STD2 S1 SM-Bank 2 MC

A dataset has the following five-number summary.

If the range of the dataset is 8, what is the minimum value of the dataset?

  1.  2
  2.  3
  3.  4
  4.  7
Show Answers Only

`D`

Show Worked Solution
`text(Range)` `=\ text{Max}-text{Min}`
`8` `= 15-text{Min Value}`
`:.\ text{Min}` `= 15-8`
  `=7`

 
`=> D`

Filed Under: Box Plots and 5-Number Summary, Summary Statistics - Box Plots (Std 2), Summary Statistics - Box Plots (Y12), Summary Statistics (Std 1) Tagged With: Band 3, num-title-ct-corea, smc-1000-10-Single Box-Plots, smc-1131-35-Box Plots, smc-5021-25-Find range, smc-825-10-Single Box-Plots

Statistics, STD2 S1 SM-Bank 1

Write down the five-number summary for the dataset 

`3, \ 7, \ 8, \ 11, \ 13, \ 18.`  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
`text(Minimum value:)`   `3`
`text(First quartile:)`   `7`
`text(Median:)`   `(11 + 8)/2 = 9.5`
`text(Third quartile:)`   `13`
`text(Maximum value:)`   `18`
Show Worked Solution
`text(Minimum value:)`   `3`
`text(First quartile:)`   `7`
`text(Median:)`   `(11 + 8)/2 = 9.5`
`text(Third quartile:)`   `13`
`text(Maximum value:)`   `18`

Filed Under: Box Plots and 5-Number Summary, Summary Statistics - Box Plots (Std 2), Summary Statistics - Box Plots (Y12) Tagged With: Band 4, common-content, num-title-ct-corea, smc-1000-10-Single Box-Plots, smc-1131-35-Box Plots, smc-5021-15-5 number (even values), smc-825-10-Single Box-Plots

Statistics, STD2 S1 2017 HSC 1 MC

The box-and-whisker plot for a set of data is shown.
 

What is the median of this set of data?

  1. 15
  2. 20
  3. 30
  4. 35
Show Answers Only

`C`

Show Worked Solution

`text(Median = 30)`

`=> C`

Filed Under: Box Plots and 5-Number Summary, Stem & Leaf, Box & Whisker, Summary Statistics - Box Plots (Std 2), Summary Statistics (Std 1) Tagged With: Band 2, common-content, num-title-ct-corea, num-title-qs-hsc, smc-1131-35-Box Plots, smc-5021-18-Find median, smc-5021-50-Box plot (single), smc-825-10-Single Box-Plots

Statistics, STD2 S1 2016 HSC 22 MC

The box-and-whisker plots show the results of a History test and a Geography test.
 

In History, 112 students completed the test. The number of students who scored above 30 marks was the same for the History test and the Geography test.

How many students completed the Geography test?

  1. 8
  2. 50
  3. 56
  4. 112
Show Answers Only

`=> C`

Show Worked Solution

`text{In History} \ => \  text{Q}_3 = 30\ \text{marks}`

`:.\ text{Scoring over 30}\ = 25text(%) xx 112 = 28\ \text{students}`
 

`text{In Geography} \ => \ text{Median}\ = 30\ \text{marks}`

`:.\ text{Students completing Geography}\ =2 xx 28 = 56\ \text{students}`

`=> C`

Filed Under: Box Plots and 5-Number Summary, Stem & Leaf, Box & Whisker, Summary Statistics - Box Plots (Std 2), Summary Statistics - Box Plots (Y12), Summary Statistics (Std 1) Tagged With: Band 4, common-content, num-title-ct-corea, num-title-qs-hsc, smc-1000-20-Parallel Box-Plots, smc-1131-35-Box Plots, smc-5021-60-Box plots (parallel), smc-825-20-Parallel Box-Plots

Statistics, STD2 S1 2016 HSC 19 MC

A soccer referee wrote down the number of goals scored in 9 different games during the season.

`2,  \ 3,  \ 3,  \ 3,  \ 5,  \ 5,  \ 8,  \ 9,  \ ...`

The last number has been omitted. The range of the data is 10.

What is the five-number summary for this data set?

  1. `2, 3, 5, 8.5, 12`
  2. `2, 3, 5, 8.5, 10`
  3. `2, 3, 5, 8, 12`
  4. `2, 3, 5, 8, 10`
Show Answers Only

`=> A`

Show Worked Solution

`text{Since range is 10} \ => \ text{Last data point = 12}`

`text{Q}_1 = 3`

`text{Q}_3 = (8 + 9)/2 = 8.5`

`text(Median = 5)`

`=> A`

♦ Mean mark 46%.

Filed Under: Box Plots and 5-Number Summary, Stem & Leaf, Box & Whisker, Summary Statistics - Box Plots (Std 2), Summary Statistics - Box Plots (Y12), Summary Statistics - No Graph (Std 2), Summary Statistics (no graph), Summary Statistics (Std 1) Tagged With: Band 5, common-content, num-title-ct-corea, num-title-qs-hsc, smc-1000-10-Single Box-Plots, smc-5021-15-5 number (even values), smc-5021-18-Find median, smc-5021-25-Find range, smc-824-70-Other, smc-825-10-Single Box-Plots

Statistics, STD2 S1 2015 HSC 6 MC

The times, in minutes, that a large group of students spend on exercise per day are presented in the box‑and‑whisker plot.
 

What percentage of these students spend between 40 minutes and 60 minutes per day on exercise?

  1. 17%
  2. 20%
  3. 25%
  4. 50%
Show Answers Only

`C`

Show Worked Solution

`text{Q}_1 = 40, \ text(Median) = 60`

`:.\ text(% Students between 40 and 60)`

`= 50text{%}-25text{%}`

`=25 text{%}`
 

`=>C`

Filed Under: Box Plots and 5-Number Summary, Stem & Leaf, Box & Whisker, Summary Statistics - Box Plots (Std 2), Summary Statistics - Box Plots (Y12), Summary Statistics (Std 1) Tagged With: Band 4, common-content, num-title-ct-corea, num-title-qs-hsc, smc-1000-10-Single Box-Plots, smc-5021-50-Box plot (single), smc-825-10-Single Box-Plots

Statistics, STD2 S1 2005 HSC 22 MC

Two groups of people were surveyed about their weekly wages. The results are shown in the box-and-whisker plots.
 

Which of the following statements is true for the people surveyed?

  1. The same percentage of people in each group earned more than $325 per week.
  2. Approximately 75% of people under 21 years earned less than $350 per week.
  3. Approximately 75% of people 21 years and older earned more than $350 per week.
  4. Approximately 50% of people in each group earned between $325 and $350 per week.
Show Answers Only

`B`

Show Worked Solution

`text{Option A: 50% of Under 21 group earned over $325 and 75%}`

`text{of Over 21 group did. NOT TRUE.}`
 

`text{Option B: 75% of Under 21 group earned below $350 is TRUE.}`
 

`text{Options C and D: can both be proven to be untrue using their}`

`text{median and quartile values.}`

`=>  B`

Filed Under: Box Plots and 5-Number Summary, Stem & Leaf, Box & Whisker, Summary Statistics - Box Plots (Std 2), Summary Statistics - Box Plots (Y12) Tagged With: Band 6, common-content, num-title-ct-corea, num-title-qs-hsc, smc-1000-20-Parallel Box-Plots, smc-5021-60-Box plots (parallel), smc-825-20-Parallel Box-Plots

Statistics, STD2 S1 2008 HSC 10 MC

The marks for a Science test and a Mathematics test are presented in box-and-whisker plots.
 

 Which measure must be the same for both tests?

  1. Mean
  2. Range
  3. Median
  4. Interquartile range
Show Answers Only

`D`

Show Worked Solution

`text(IQR)=text(Upper Quartile)-text(Lower Quartile)`

`text{In both box plots, IQR = 3 intervals (against bottom scale)}`

`=>  D`

Filed Under: Box Plots and 5-Number Summary, Stem & Leaf, Box & Whisker, Summary Statistics - Box Plots (Std 2), Summary Statistics - Box Plots (Y12), Summary Statistics (Std 1) Tagged With: Band 4, common-content, num-title-ct-corea, num-title-qs-hsc, smc-1000-20-Parallel Box-Plots, smc-1131-35-Box Plots, smc-5021-60-Box plots (parallel), smc-825-20-Parallel Box-Plots

Statistics, STD2 S1 2010 HSC 27b

The graphs show the distribution of the ages of children in Numbertown in 2000 and 2010.
  

  1. In 2000 there were 1750 children aged 0–18 years.

     

    How many children were aged 12–18 years in 2000?   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. The number of children aged 12–18 years is the same in both 2000 and 2010.

     

    How many children aged 0–18 years are there in 2010?    (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. Identify TWO changes in the distribution of ages between 2000 and 2010. In your answer, refer to measures of location or spread or the shape of the distributions.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4. What would be ONE possible implication for government planning, as a consequence of this change in the distribution of ages?   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    `875`

ii.    `3500`

iii.  `text{Changes in distribution (include 2 of the following):}`

  • `text(the lower quartile age is lower in 2010)`
  • `text(the median is lower in 2010)`
  • `text(the upper quartile age is lower in 2010)`
  • `text(the interquartile range is greater in 2010)`
  • `text(2010 is positively skewed while 2000 is negatively)`

iv.  `text(Implication for government planning:)`

`text(Since the children are getting younger in 2010,)`

  • `text(Approve and build more childcare facilities)`
  • `text(Build more school and public playgrounds)`
Show Worked Solution

i.    `text{Since the median = 12 years}`

♦ Mean mark (i) 45%

`=>\ text{50% of children are aged 12–18 years}`

`:.\ text{Children aged 12–18}\ = 50\text{%}\ xx 1750 = 875`

 

♦♦ Mean mark (ii) 25%

ii.   `text{Upper quartile (2010) = 12 years}`

`text{Children in upper quartile = 875 (from part (i))}`

`:.\ text{Children aged 0–18}\ =4 xx 875= 3500`
 

iii.  `text{Changes in distribution (include 2 of the following):}`

♦ Mean mark (iii) 35%
MARKER’S COMMENT: A number of students incorrectly identified “positive” skew as “negative” skew here.
  • `text(the lower quartile age is lower in 2010)`
  • `text(the median is lower in 2010)`
  • `text(the upper quartile age is lower in 2010)`
  • `text(the interquartile range is greater in 2010)`
  • `text(2010 is positively skewed while 2000 is negatively)`

iv.  `text(Implication for government planning:)`

♦ Mean mark (iv) 46%
MARKER’S COMMENT: Answers should reflect the 1 mark allocation.

`text(Since the children are getting younger in 2010,)`

  • `text(Approve and build more childcare facilities)`
  • `text(Build more school and public playgrounds)`

Filed Under: Box Plots and 5-Number Summary, Stem & Leaf, Box & Whisker, Summary Statistics - Box Plots (Std 2), Summary Statistics - Box Plots (Y12) Tagged With: Band 5, common-content, num-title-ct-corea, num-title-qs-hsc, smc-1000-20-Parallel Box-Plots, smc-5021-60-Box plots (parallel), smc-5021-80-Inferences from dataset, smc-825-20-Parallel Box-Plots

Statistics, STD2 S1 2011 HSC 7 MC

A set of data is displayed in this box-and-whisker plot.
 

Which of the following best describes this set of data?

  1. Symmetrical
  2. Positively skewed
  3. Negatively skewed
  4. Normally distributed
Show Answers Only

`B`

Show Worked Solution

`text{Since the median (155) is closer to the lower quartile (150) and range}`

`text{low (140) than the upper quartile (190) and range high (200), it is}`

`text{positively skewed.}`

`=>B`

♦ Mean mark 47%.

Filed Under: Box Plots and 5-Number Summary, Stem & Leaf, Box & Whisker, Summary Statistics - Box Plots (Std 2), Summary Statistics - Box Plots (Y12), Summary Statistics (Std 1) Tagged With: Band 5, common-content, num-title-ct-corea, num-title-qs-hsc, smc-1000-10-Single Box-Plots, smc-1131-35-Box Plots, smc-5021-50-Box plot (single), smc-5021-70-Skew, smc-825-10-Single Box-Plots

Copyright © 2014–2025 SmarterEd.com.au · Log in