SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, SPEC2 2023 VCAA 10 MC

If  \(I_n=\displaystyle {\int_0^1\left((1-x)^n e^x\right) d x}\), where  \(n \in N\), then for  \(n \geq 1, I_n\) equals

  1. \(-1+n I_{n-1}\)
  2. \(n I_{n-1}\)
  3. \(-1-n I_{n-1}\)
  4. \(-n I_{n-1}\)
  5. \((1-x)^n e^x+n I_{n-1}\)
Show Answers Only

\(A\)

Show Worked Solution

\(\text{Using integration by parts:}\)

\begin{aligned}
u &=(1-x)^n, & u^{′} &=n(1-x)^{n-1}\\
v^{′} & = e^x, & v & = e^x\  \\
\end{aligned}

\begin{aligned}
\int_0^1 ((1-x)^n e^x)\,dx\ &= uv-\int u^{′} v \ dx\\
& = \Bigr[(1-x)^n\,e^x\Bigr]_0 ^1- \int_0 ^1 n(1-x)^{n-1}\,e^x\ dx  \\
& =-1-n\int_0 ^1 (1-x)^{n-1}\,e^x\ dx  \\
& =-1-nI_{n-1}  \\
\end{aligned}

\(\Rightarrow A\)

Filed Under: Integration By Parts (SM) Tagged With: Band 4, smc-5134-20-Exponential, smc-5134-50-Recursive

Copyright © 2014–2025 SmarterEd.com.au · Log in