Find all the values of \(\theta\), where \(-180^{\circ} \leq \theta \leq 180^{\circ}\), such that
\(\tan\,\theta(\tan\,\theta-1)=0\) (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find all the values of \(\theta\), where \(-180^{\circ} \leq \theta \leq 180^{\circ}\), such that
\(\tan\,\theta(\tan\,\theta-1)=0\) (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\theta=-180^{\circ}, -135^{\circ}, 0^{\circ}, 45^{\circ}, 180^{\circ}\)
\(\text{If}\ \ \tan\,\theta=0\ \ \Rightarrow\ \ \theta=0^{\circ}, 180^{\circ}, -180^{\circ} \)
\(\text{If}\ \ \tan\,\theta-1=0\ \ \Rightarrow\ \ \tan\,\theta=1\)
\(\text{Reference angle:}\ \ \tan\,\theta=1\ \ \Rightarrow \ \ \theta = 45^{\circ}\)
\(\text{tan is positive in 1st/3rd quadrants.}\)
\(\theta=45^{\circ}, (180+45)^{\circ}=45^{\circ}, 225^{\circ} = 45^{\circ}, -135^{\circ}\ \ (-180^{\circ} \leq \theta \leq 180^{\circ}) \)
\(\therefore \theta=-180^{\circ}, -135^{\circ}, 0^{\circ}, 45^{\circ}, 180^{\circ}\)
Identify all \(\theta\) values between \(0^{\circ} \leq \theta \leq 360^{\circ}\), such that
\(\tan\,\theta +1=0\) (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\theta=135^{\circ}, 315^{\circ}\)
\(\tan\,\theta +1=0\ \ \Rightarrow \ \ \tan\,\theta=-1\)
\(\text{Reference angle:}\ \ \tan\,\theta=1\ \ \Rightarrow \ \ \theta = 45^{\circ}\)
\(\text{tan is negative in 2nd/4th quadrants.}\)
\(\theta=(180-45)^{\circ}, (360-45)^{\circ}=135^{\circ}, 315^{\circ}\)
Identify all \(\theta\) values between \(0^{\circ} \leq \theta \leq 360^{\circ}\), such that
\(\tan^{2}\theta=\dfrac{1}{3} \) (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\theta=30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}\)
| \(\tan^{2}\theta\) | \(=\dfrac{1}{3} \) | |
| \(\tan\,\theta\) | \(=\pm \dfrac{1}{\sqrt{3}} \) |
\(\text{Reference angle:}\ \ \tan\,\theta=\dfrac{1}{\sqrt{3}}\ \ \Rightarrow \ \ \theta = 30^{\circ}\)
\(\text{Angles exist in all quadrants:}\)
| \(\theta\) | \(=30^{\circ}, (180-30)^{\circ},(180+30)^{\circ},(360-30)^{\circ}\) | |
| \(=30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}\) |
Find every angle, \(\theta\), between \(0^{\circ} \leq \theta \leq 360^{\circ}\), for which
\(\tan\,\theta=-\sqrt{3}\) (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\theta=120^{\circ}, 300^{\circ}\)
\(\text{Reference angle:}\ \ \tan\,\theta=-\sqrt{3}\ \ \Rightarrow \ \ \theta = 60^{\circ}\)
\(\text{tan is negative in 2nd/4th quadrants.}\)
\(\theta=(180-60)^{\circ}, (360-60)^{\circ}=120^{\circ}, 300^{\circ}\)
Identify all \(\theta\) values between \(0^{\circ} \leq \theta \leq 360^{\circ}\), such that
\(\tan\,\theta=-\dfrac{1}{\sqrt{3}} \) (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\theta=150^{\circ}, 330^{\circ}\)
\(\text{Reference angle:}\ \ \tan\,\theta=\dfrac{1}{\sqrt{3}}\ \ \Rightarrow \ \ \theta = 30^{\circ}\)
\(\text{tan is negative in 2nd/4th quadrants.}\)
\(\theta=(180-30)^{\circ}, (360-30)^{\circ}=150^{\circ}, 330^{\circ}\)
Identify all \(\theta\) values between \(0^{\circ} \leq \theta \leq 360^{\circ}\), such that
\(\tan\,\theta=\sqrt{3} \) (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\theta=60^{\circ}, 240^{\circ}\)
\(\text{Reference angle:}\ \ \tan\,\theta=\sqrt{3}\ \ \Rightarrow \ \ \theta = 60^{\circ}\)
\(\text{tan is positive in 1st/3rd quadrants.}\)
\(\theta=60^{\circ}, (180+60)^{\circ}=60^{\circ}, 240^{\circ}\)
Find the exact value of
\(\tan(-150^{\circ})\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\dfrac{1}{\sqrt{3}}\)
What are the solutions of `sqrt3 tanx = -1` for `0^@<=x<=360^@`?
`D`
| `sqrt3 tanx` | `= -1` |
| `tanx` | `= -1/sqrt3` |
`text(When)\ tanx = 1/sqrt3,\ \ x=30^@`
`text(S)text(ince)\ tanx\ text{is negative in 2nd/4th quadrant:}`
| `:. x` | ` = 180-30,360-30` |
| `= 150^@,\ 330^@` |
`=> D`
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. \(30^{\circ}\)
b. \(\dfrac{1}{\sqrt{3}}\)
a. \(210^{\circ}\ \text{is in the 3rd quadrant.}\)
\(\text{Reference angle:}\ \ 180+\theta=210^{\circ}\ \ \Rightarrow \ \ \theta = 30^{\circ}\)
b. \(\tan 30^{\circ} = \dfrac{1}{\sqrt{3}}\)
\(\Rightarrow \ \tan \theta>0\ \ \text{in 3rd quadrant}\)
\(\therefore \tan 210^{\circ} = \dfrac{1}{\sqrt{3}}\)
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. \(60^{\circ}\)
b. \(-\sqrt{3}\)
a. \(120^{\circ}\ \text{is in the 2nd quadrant.}\)
\(\text{Reference angle:}\ \ 180-120=60^{\circ}\)
b. \(\tan 60^{\circ} = \sqrt{3}\)
\(\Rightarrow \ \tan \theta<0\ \ \text{in 2nd quadrant}\)
\(\therefore \tan 120^{\circ} = -\sqrt{3}\)