SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Probability, MET2 2021 VCAA 17 MC

A discrete random variable `X` has a binomial distribution with a probability of success of  `p = 0.1`  for `n` trials, where  `n > 2`.

If the probability of obtaining at least two successes after `n` trials is at least 0.5, then the smallest possible value of `n` is

  1. 15
  2. 16
  3. 17
  4. 18
  5. 19
Show Answers Only

`C`

Show Worked Solution

`text(Pr) (X ≥ 2) ≥ 0.5`

`text(Pr) (X = 0)` `=\ ^n C_0 xx 0.1^0 xx 0.9^n=0.9^n`
`text(Pr) (X = 1)` `=\ ^n C_1 xx 0.1^1 xx 0.9^{n-1}=nxx0.1xx0.9^(n-1)`
`text(Pr) (X ≥ 2)` `= 1 – (text(Pr) (X=0) + text(Pr) (X=1))`

  
`text{Solve for} \ n \ text{(by CAS):}`

`1 – (0.9^n + n xx 0.1 xx 0.9^{n-1}) ≥ 0.5`

`n = 17`

`=> \ C`

Filed Under: Binomial Tagged With: Band 4, smc-638-17-Find n given sample proportion

Probability, MET1 2017 VCAA 4

In a large population of fish, the proportion of angel fish is `1/4`.

Let `hat P` be the random variable that represents the sample proportion of angel fish for samples of size `n` drawn from the population.

Find the smallest integer value of `n` such that the standard deviation of `hat P` is less than or equal to `1/100`.  (2 marks)

Show Answers Only

`n_text(min) = 1875`

Show Worked Solution

`text(Let)\ X =\ text(number of angel fish),\ X ~ text(Bi) (n, 1/4)`

`text(sd)\ (hat P)` `= sqrt((p(1 – p))/n)`
  `= sqrt((1/4 xx 3/4)/n)`
  `= sqrt(3/(16n))`

 

`text(Solve:)\ \ \ sqrt(3/(16n))` `<= 1/100`
`3/(16 n)` `<= 1/(10\ 000)`
`(30\ 000)/16` `<= n`
`:. n` `>= 1875`

 

`:. n_text(min) = 1875`

Filed Under: Binomial Tagged With: Band 4, smc-638-17-Find n given sample proportion

Copyright © 2014–2025 SmarterEd.com.au · Log in