Given \(\tan \theta=\cfrac{1}{3}\) and \(0°<\theta<90°\),
find the value of \(\dfrac{1-\sin (180+\theta)}{\cos (90-\theta)}\).
- \(\sqrt{10}+1\)
- \(1\)
- \(\sqrt{10}-1\)
- \(\dfrac{\sqrt{10}}{2}\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Given \(\tan \theta=\cfrac{1}{3}\) and \(0°<\theta<90°\),
find the value of \(\dfrac{1-\sin (180+\theta)}{\cos (90-\theta)}\).
\(\Rightarrow A\)
Express \(3 \operatorname{cosec}(180+x)+5 \cos (90-x)\) as a single fraction in terms of \(\sin x\), given all angles are measured in degrees. (3 marks) --- 8 WORK AREA LINES (style=lined) --- \(\dfrac{-3+5 \sin ^2 x}{\sin x}\) \(3 \operatorname{cosec}(180+x)+5 \cos (90-x)\) \(=\dfrac{3}{\sin \left(180^{\circ}+x\right)}+5 \sin x\) \(=\dfrac{3}{-\sin x}+5 \sin x\) \(=\dfrac{-3}{\sin x}+\dfrac{5 \sin ^2 x}{\sin x}\) \(=\dfrac{-3+5 \sin ^2 x}{\sin x}\)
Show Answers Only
Show Worked Solution