SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Trigonometry, 2ADV T2 EQ-Bank 2 MC

Given  \(\tan \theta=\cfrac{1}{3}\)  and  \(0°<\theta<90°\),

find the value of  \(\dfrac{1-\sin (180+\theta)}{\cos (90-\theta)}\).

  1. \(\sqrt{10}+1\)
  2. \(1\)
  3. \(\sqrt{10}-1\)
  4. \(\dfrac{\sqrt{10}}{2}\)
Show Answers Only

\(\Rightarrow A\)

Show Worked Solution

\(\text {Since} \ \ \tan \theta=\dfrac{1}{3}:\)
 

\(\dfrac{1-\sin (180+\theta)}{\cos (90-\theta)}\) \(=\dfrac{1+\sin \theta}{\sin \theta}\)
  \(=\dfrac{1+\frac{1}{\sqrt{10}}}{\frac{1}{\sqrt{10}}} \times \dfrac{\sqrt{10}}{\sqrt{10}}\)
  \(=\sqrt{10}+1\)

 

\(\Rightarrow A\)

Filed Under: Trig Identities and Harder Equations, Trig Identities and Harder Equations (Y11) Tagged With: Band 4, smc-1189-10-Solve Equation, smc-6412-10-Solve Equation, smc-6412-28-Complementary Angles

Trigonometry, 2ADV T2 EQ-Bank 2

Express  \(3 \operatorname{cosec}(180+x)+5 \cos (90-x)\)  as a single fraction in terms of \(\sin x\), given all angles are measured in degrees.   (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\dfrac{-3+5 \sin ^2 x}{\sin x}\)

Show Worked Solution

\(3 \operatorname{cosec}(180+x)+5 \cos (90-x)\)

\(=\dfrac{3}{\sin \left(180^{\circ}+x\right)}+5 \sin x\)

\(=\dfrac{3}{-\sin x}+5 \sin x\)

\(=\dfrac{-3}{\sin x}+\dfrac{5 \sin ^2 x}{\sin x}\)

\(=\dfrac{-3+5 \sin ^2 x}{\sin x}\)

Filed Under: Trig Identities and Harder Equations, Trig Identities and Harder Equations (Y11) Tagged With: Band 4, smc-1189-30-Other, smc-6412-28-Complementary Angles, smc-6412-30-Other

Copyright © 2014–2026 SmarterEd.com.au · Log in