SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C1 2023 MET2 11 MC

Two functions, \(f\) and \(g\), are continuous and differentiable for all  \(x\in R\). It is given that  \(f(-2)=-7,\ g(-2)=8\)  and  \(f^{′}(-2)=3,\ g^{′}(-2)=2\).

The gradient of the graph  \(y=f(x)\times g(x)\)  at the point where  \(x=-2\)  is

  1. \(-6\)
  2. \(0\)
  3. \(6\)
  4. \(10\)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Using the Product Rule when}\ \ x=-2:\)

\(\dfrac{d}{dx}(f(x)\times g(x))\) \(=f(x)g^{′}(x)+g(x)f^{′}(x)\)
  \(=f(-2)g^{′}(-2)+g(-2)f^{′}(-2)\)
  \(=-7\times 2+8\times 3\)
  \(=10\)

 
\(\Rightarrow D\)


♦♦♦ Mean mark 22%.

Filed Under: Standard Differentiation (Adv-2027), Standard Differentiation (Y11) Tagged With: Band 5, smc-1069-25-Product Rule, smc-1069-45-Composite functions, smc-6436-25-Chain Rule, smc-6436-45-Composite Functions

Calculus, 2ADV C1 2023 HSC 7 MC

It is given that  `y=f(g(x))`, where  `f(1)=3`, `f^{′}(1)=-4`, `g(5)=1`  and  `g^{′}(5)=2`.

What is the value of `y^{′}` at  `x=5`?

  1. `-8`
  2. `-4`
  3. `3`
  4. `6`
Show Answers Only

`A`

Show Worked Solution
`y` `=f(g(x))`  
`y^{′}` `=f^{′}(g(5)) xx g^{′}(5)`  
  `=f^{′}(1) xx 2`  
  `=-4xx2`  
  `=-8`  

 
`=>A`

♦♦ Mean mark 38%.

Filed Under: Standard Differentiation (Adv-2027), Standard Differentiation (Y11) Tagged With: Band 5, smc-1069-45-Composite functions, smc-6436-45-Composite Functions

Copyright © 2014–2025 SmarterEd.com.au · Log in