SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C1 2019 HSC 14d

The equation of the tangent to the curve  `y = x^3 + ax^2 + bx + 4`  at the point where  `x = 2`  is  `y = x - 4`.

Find the values of  `a`  and  `b`.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`b = -3,\ \ a = -2`

Show Worked Solution
`y ` `= x^3 + ax^2 + bx + 4`
`(dy)/(dx)` `= 3x^2 + 2ax + b`

 
`text(When)\ \ x = 2,\ \ (dy)/(dx) = 1`

♦ Mean mark 46%.

`12 + 4a + b` `= 1`
`4a + b` `= -11\ …\ (1)`

 
`text(The point)\ (2, -2)\ text(lies on)\ y:`

`8 + 4a + 2b + 4` `=-2`
`4a + 2b` `= -14\ …\ (2)`

  
`text(Subtract)\ \ (2) – (1)`

`b = -3`

`text(Substitute into)\ (1)`

`4a – 3` `= -11`
`4a` `= -8`
`a` `= -2`

Filed Under: Tangents (Adv-2027), Tangents (Y11) Tagged With: Band 5, smc-6437-20-Find Curve Equation, smc-973-20-Find Curve Equation

Copyright © 2014–2025 SmarterEd.com.au · Log in