The expression `log_x(y) + log_y(z)`, where `x, y` and `z` are all real numbers greater than 1, is equal to
- `-1/(log_y(x)) - 1/(log_z(y))`
- `1/(log_x(y)) + 1/(log_y(z))`
- `-1/(log_x(y)) - 1/(log_y(z))`
- `1/(log_y(x)) + 1/(log_z(y))`
- `log_y(x) + log_z(y)`