Find `f^{′}(x)`, where `f(x) = (x^2 + 3)/(x-1).` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find `f^{′}(x)`, where `f(x) = (x^2 + 3)/(x-1).` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`((x-3) (x + 1))/(x-1)^2`
`f(x) = (x^2 + 3)/(x-1)`
`text(Using the quotient rule)`
| `u` | `= x^2 + 3` | `\ \ \ \ \ \ v` | `= x-1` |
| `u^{′}` | `= 2x` | `\ \ \ \ \ \ v^{′}` | `= 1` |
| `f′(x)` | `= (u^{′} v-uv^{′})/v^2` |
| `= (2x (x-1)-(x^2 + 3) xx 1)/(x-1)^2` | |
| `= (2x^2-2x-x^2-3)/(x-1)^2` | |
| `= (x^2-2x-3)/(x-1)^2` | |
| `= ((x-3) (x + 1))/(x-1)^2` |
Differentiate `(x + 2)/(3x-4).` (2 marks)
`(-10)/(3x-4)^2`
`y = (x + 2)/(3x-4)`
`text(Using the quotient rule:)`
| `(g/h)^{′}` | `= (g^{′} h-gh^{′})/h^2` |
| `y^{′}` | `= (1 (3x-4)-(x + 2) · 3)/(3x-4)^2` |
| `= (-10)/(3x-4)^2` |
Let `f: (-2, oo) -> R,\ f(x) = x/(x + 2)`.
Differentiate `f` with respect to `x`. (2 marks)
`f prime(x) = 2/(x + 2)^2`
`text(Using Quotient Rule:)`
| `(h/g)′` | `= (h′ g – h g′)/g^2` |
| `:. f prime (x)` | `= (1 xx (x + 2) – x xx 1)/(x + 2)^2` |
| `= 2/(x + 2)^2` |