SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Graphs, MET2 2021 VCAA 18 MC

Let  `f : R to R, \ f(x) = (2x - 1)(2x + 1)(3x - 1)`  and  `g : (–∞, 0) to R, \ g(x) = x log_e(–x)`.

The maximum number of solutions for the equation  `f(x - k) = g(x)`, where  `k ∈ R`, is

  1. 0
  2. 1
  3. 2
  4. 3
  5. 4
Show Answers Only

`D`

Show Worked Solution

`text{By CAS, graph}`

♦ Mean mark 39%.

`f(x) = (2x – 1)(2x + 1)(3x – 1) , text{and}`

`g(x) = x log_e (-x) , x < 0`
 


 

`text{If} \ f(x) \ text{is translated to the left, by inspection,}`

`text{a maximum of 3 intersections can occur.}`
 

`=> \ D`

Filed Under: Transformations Tagged With: Band 5, smc-753-90-Graph intersections

Copyright © 2014–2025 SmarterEd.com.au · Log in