SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Measurement, STD2 M6 2025 HSC 35

The triangle \(PTA\) is shown. The length of \(PA\) is 75 m and the length of \(PT\) is 51 m.

The angle of depression from \(T\) to \(A\) is 36°, and the angle \(PTA\) is obtuse.
 

Find the length of \(TA\). Give your answer correct to 2 decimal places.   (3 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

\(TA=35.03 \ \text{m}\)

Show Worked Solution

\(\angle TAP=36^{\circ} \ \text {(alternate)}\)

\(\text{Using sine rule in} \ \triangle TAP:\)

\(\dfrac{\sin \angle PTA}{75}\) \(=\dfrac{\sin 36^{\circ}}{51}\)
\(\sin \angle PTA\) \(=75 \times \dfrac{\sin 36^{\circ}}{54}=0.864 \ldots\)
\(\angle PTA\) \(=\sin ^{-1}(0.864 \ldots)=180-59.81=120.19^{\circ}\ \ \text{(obtuse)}\)

 
\(\angle PTX=120.19-54=66.19^{\circ}\)

\(\angle TPA=90-66.19=23.81^{\circ}\ \left(180^{\circ}\ \text{in}\ \triangle \right)\)
 

\(\text{Using sine rule in} \ \triangle TAP:\)

\(\dfrac{TA}{\sin 23.81^{\circ}}\) \(=\dfrac{51}{\sin 36^{\circ}}\)
\(TA\) \(=\dfrac{51 \times \sin 23.81^{\circ}}{\sin 36^{\circ}}\)
  \(=35.03 \ \text{m (2 d.p.)}\)

Filed Under: Non-Right Angled Trig (Std2) Tagged With: Band 6, smc-804-20-Sine Rule, smc-804-50-Obtuse

Copyright © 2014–2025 SmarterEd.com.au · Log in