SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

L&E, 2ADV E1 EQ-Bank 2

Show  \(f(x)=\dfrac{1}{2}-\dfrac{1}{2^x+1}\)  is an odd function.  (3 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{Odd}\ \ \Rightarrow \  \ f(-x)=-f(x)\)

\(\begin{aligned}
f(x) & =\dfrac{1}{2}-\dfrac{1}{2^x+1} \\
f(-x) & =\dfrac{1}{2}-\dfrac{1}{2^{-x}+1} \times \dfrac{2^x}{2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x}{1+2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x+1-1}{2^x+1} \\
& =\dfrac{1}{2}-1+\dfrac{1}{2^x+1} \\
& =-\dfrac{1}{2}+\dfrac{1}{2^x+1} \\
& =-f(x)
\end{aligned}\)

 
\(\therefore f(x) \text { is odd.}\)

Show Worked Solution

\(\text{Odd}\ \ \Rightarrow \  \ f(-x)=-f(x)\)

\(\begin{aligned}
f(x) & =\dfrac{1}{2}-\dfrac{1}{2^x+1} \\
f(-x) & =\dfrac{1}{2}-\dfrac{1}{2^{-x}+1} \times \dfrac{2^x}{2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x}{1+2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x+1-1}{2^x+1} \\
& =\dfrac{1}{2}-1+\dfrac{1}{2^x+1} \\
& =-\dfrac{1}{2}+\dfrac{1}{2^x+1} \\
& =-f(x)
\end{aligned}\)

 
\(\therefore f(x) \text { is odd.}\)

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11) Tagged With: Band 5, smc-6455-50-Exponential Equations, smc-6455-70-Odd/Even Functions, smc-963-50-Exponential Equation, smc-963-70-Odd/even functions

Copyright © 2014–2025 SmarterEd.com.au · Log in