SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C4 SM-Bank 1

If  `m = int_1^3 (2)/(x)\ dx`, express  `e^m`  in its simplest form.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`9`

Show Worked Solution
`int_1^3 (2)/(x)\ dx` `= [2 log_e x]_1^3`
`m` `= 2 log_e 3 – 2 log_e 1`
  `= 2 log_e 3`
`:. e^m` `=e^(2 log_e 3)`
  `= e^(log_e 9)`
  `= 9`

Filed Under: L&E Integration, Log Calculus (Y12) Tagged With: Band 4, smc-1203-40-Log (Definite), smc-964-30-Definite Integals

Calculus, 2ADV C4 2006 HSC 2bii

Evaluate  `int_0^3 (8x)/(1 + x^2) \ dx`.  (3 marks)

Show Answers Only

`4 log_e 10`

Show Worked Solution

`int_0^3 (8x)/(1 + x^2) \ dx`

`= 4 int_0^3 (2x)/(1 + x^2) \ dx`

`= 4 [log_e (1 + x^2)]_0^3`

`= 4 [log_e (1 + 9) – log_e (1 + 0)]`

`= 4 [log_e 10 – log_e 1]`

`= 4 log_e 10`

Filed Under: L&E Integration, Log Calculus (Y12) Tagged With: Band 4, smc-1203-40-Log (Definite), smc-964-30-Definite Integals

Calculus, 2ADV C4 2011 HSC 4b

Evaluate  `int_e^(e^3) 5/x\ dx`   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answer Only

`10`

Show Worked Solutions

`int_e^(e^3) 5/x\ dx`

`=5int_e^(e^3) 1/x\ dx`

MARKER’S COMMENT: Most common error was `ln(5x)`. Minimize errors by getting the integral in the form of `(f prime(x))/f(x)` before integrating. 

`=5[lnx]_e^(e^3)`

`=5(lne^3-lne)`

`=5(3-1)`

`=10`

 

Filed Under: Exponential Calculus, Integrals, L&E Integration, Log Calculus, Log Calculus (Y12) Tagged With: Band 4, smc-1203-40-Log (Definite), smc-964-30-Definite Integals

Calculus, 2ADV C4 2012 HSC 9 MC

What is the value of  `int_1^4 1/(3x)\ dx`? 

  1. `1/3ln3`
  2. `1/3ln4`
  3. `ln9`
  4. `ln12`

 

Show Answer Only

`B`

Show Worked Solutions

`int_1^4 1/(3x)dx`

TIP: Note that `ln(1)=0`, as `e^0=1`

`=1/3[lnx]_1^4`

`=1/3[ln4-ln1]`

`=1/3ln4`

`=>B`

Filed Under: Integrals, L&E Integration, Log Calculus, Log Calculus (Y12) Tagged With: Band 4, smc-1203-40-Log (Definite), smc-964-30-Definite Integals

Calculus, 2ADV C4 2013 HSC 11f

Evaluate  `int_0^1x^2/(x^3+1)\ dx`    (3 marks)

 

Show Answer Only

 `1/3ln2`

Show Worked Solutions

`int_0^1x^2/(x^3+1)dx`

`=1/3int_0^1(3x^2)/(x^3+1)dx`

`=1/3[ln(x^3+1)]_0^1`

TIP: Note that `ln(1)=0`, because `e^0=1`

`=1/3(ln2-ln1)`

`=1/3ln2`

 

Filed Under: Integrals, L&E Integration, Log Calculus, Log Calculus (Y12) Tagged With: Band 4, smc-1203-40-Log (Definite), smc-964-30-Definite Integals

Copyright © 2014–2025 SmarterEd.com.au · Log in