Differentiate with respect to `x`:
`e^(tan(2x))` (2 marks)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Differentiate with respect to `x`:
`e^(tan(2x))` (2 marks)
`2 sec^2(2x)* e^(tan(2x))`
`y` | `=e^(tan(2x))` |
`dy/dx` | `= d/(dx)tan(2x) xx e^(tan(2x))` |
`= 2 sec^2(2x)* e^(tan(2x))` |
Differentiate with respect to `x`:
`(1 + tan x)^10`. (2 marks)
`10 sec^2 x \ (1 + tan x)^9`
`y = (1 + tan x)^10`
`(dy)/(dx)` | `= 10 (1 + tan x)^9 xx d/(dx) (tan x)` |
`= 10 sec^2 x \ (1 + tan x)^9` |
Differentiate `x tan x` with respect to `x`. (2 marks)
`dy/dx = x sec^2 x + tan x `
i. `y = x tan x`
`text(Using product rule)`
`d/dx (uv)` | `= u prime v + uv prime` |
`:.dy/dx` | `= tan x + x xx sec^2 x` |
`= x sec^2 x + tan x` |
Differentiate `x^2 tan x` with respect to `x`. (2 marks)
`2x tanx + x^2 sec^2 x`
`y = x^2 tan x`
`text(Using product rule:)`
`d/dx (uv)` | ` = u prime v + u v prime` |
`dy/dx` | `=2x tanx + x^2 sec^2 x` |