SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Trigonometry, SMB-056

Find \(\theta\), to the nearest degree, such that

\(\dfrac{12}{\sin \theta} = \dfrac{15}{\sin 26^{\circ}} \)   (2 marks)

Show Answers Only

\(\theta=21^{\circ}\)

Show Worked Solution
\(\dfrac{12}{\sin \theta}\) \(= \dfrac{15}{\sin 26^{\circ}} \)  
\(\dfrac{\sin \theta}{12}\) \(= \dfrac{\sin 26^{\circ}}{15} \)  
\(\sin \theta\) \(= \dfrac{12 \times \sin 26^{\circ}}{15}\)  
\(\theta\) \(=\sin^{-1} (0.3507) \)  
  \(=21^{\circ}\ \text{(nearest degree)} \)  

Filed Under: Non Right-Angled Trig Tagged With: num-title-ct-pathc, smc-4553-20-Sine Rule

Copyright © 2014–2025 SmarterEd.com.au · Log in