SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Volume, SM-Bank 064

  1. For the triangular prism above, use Pythagoras' Theorem to calculate the perpendicular height, \(x\), of the triangular face.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Using your answer from (a), calculate the volume of the prism in cubic millimetres.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(5\ \text{mm}\)

b.    \(480\ \text{mm}^3\)

Show Worked Solution
a.    \(a^2+b^2\) \(=c^2\)
  \(x^2+12^2\) \(=13^2\)
  \(x^2\) \(=13^2-12^2\)
  \(x^2\) \(=25\)
  \(x\) \(=\sqrt{25}=5\)

 
\(\therefore\ \text{The perpendicular height of the triangle is }5\ \text{mm}\)
 

b.    \(V\) \(=Ah\)
    \(=\Big(\dfrac{1}{2}\times 12\times 5\Big)\times 16\)
    \(=30\times 16\)
    \(=480\ \text{mm}^3\)

Filed Under: Prisms Tagged With: num-title-ct-core, smc-4980-10-Triangular

Copyright © 2014–2025 SmarterEd.com.au · Log in