SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Volume, SM-Bank 066

Gavin is going camping in the summer holidays and purchased the two-person tent shown below.

  1. Given the triangular face of the tent is isosceles, use Pythagoras' Theorem to calculate the perpendicular height of the tent.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Using your answer from (a), calculate the volume of the tent in cubic metres.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. What is the capacity of the tent in litres?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\ \text{m}\)

b.    \(12 \text{m}^3\)

c.    \(12\ 000\ \text{L}\)

Show Worked Solution
a.    \(a^2+b^2\) \(=c^2\)
  \(x^2+1.5^2\) \(=2.5^2\)
  \(x^2\) \(=2.5^2-1.5^2\)
  \(x^2\) \(=4\)
  \(x\) \(=\sqrt{4}=2\)

 
\(\therefore\ \text{The perpendicular height of the tent is }2\ \text{metres.}\)
 

b.    \(V\) \(=Ah\)
    \(=\Big(\dfrac{1}{2}\times 3\times 2\Big)\times 4\)
    \(=3\times 4\)
    \(=12\ \text{m}^3\)

 

c.    \(1\ \text{m}^3\) \(=1000\ \text{L}\)
  \(\therefore\ 12\ \text{m}^3\) \(=12\ 000\ \text{L}\)

  
\(\therefore\ \text{The capacity of the tent is }12\ 000\ \text{litres.}\)

Filed Under: Prisms Tagged With: num-title-ct-core, smc-4980-10-Triangular, smc-4980-70-Capacity

Volume, SM-Bank 065

  1. Given the triangular face of the prism above is isosceles, use Pythagoras' Theorem to calculate its perpendicular height. Give your answer correct to the nearest whole centimetre.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Using your answer from (a), calculate the volume of the prism in cubic centimetres.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(7\ \text{cm}\)

b.    \(168\ \text{cm}^3\)

Show Worked Solution
a.    \(a^2+b^2\) \(=c^2\)
  \(a^2+3^2\) \(=7.6^2\)
  \(a^2\) \(=7.6^2-3^2\)
  \(a^2\) \(=48.76\)
  \(a\) \(=\sqrt{48.76}=6.982\dots\)
  \(a\) \(\approx 7\)

 
\(\therefore\ \text{The perpendicular height of the triangle is }7\ \text{cm, (nearest whole centimetre).}\)
 

b.    \(V\) \(=Ah\)
    \(=\Big(\dfrac{1}{2}\times 6\times 7\Big)\times 8\)
    \(=21\times 8\)
    \(=168\ \text{cm}^3\)

Filed Under: Prisms Tagged With: num-title-ct-core, smc-4980-10-Triangular

Volume, SM-Bank 064

  1. For the triangular prism above, use Pythagoras' Theorem to calculate the perpendicular height, \(x\), of the triangular face.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Using your answer from (a), calculate the volume of the prism in cubic millimetres.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(5\ \text{mm}\)

b.    \(480\ \text{mm}^3\)

Show Worked Solution
a.    \(a^2+b^2\) \(=c^2\)
  \(x^2+12^2\) \(=13^2\)
  \(x^2\) \(=13^2-12^2\)
  \(x^2\) \(=25\)
  \(x\) \(=\sqrt{25}=5\)

 
\(\therefore\ \text{The perpendicular height of the triangle is }5\ \text{mm}\)
 

b.    \(V\) \(=Ah\)
    \(=\Big(\dfrac{1}{2}\times 12\times 5\Big)\times 16\)
    \(=30\times 16\)
    \(=480\ \text{mm}^3\)

Filed Under: Prisms Tagged With: num-title-ct-core, smc-4980-10-Triangular

Volume, SM-Bank 063

Calculate the volume of the triangular prism below in cubic metres.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(648\ \text{m}^3\)

Show Worked Solution
\(V\) \(=Ah\)
  \(=\Big(\dfrac{1}{2}\times 8\times 9\Big)\times 18\)
  \(=36\times 18\)
  \(=648\ \text{m}^3\)

Filed Under: Prisms Tagged With: num-title-ct-core, smc-4980-10-Triangular

Volume, SM-Bank 062

Calculate the volume of the triangular prism below in cubic centimetres.   (2 marks) 
 

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(102.362\ \text{cm}^3\)

Show Worked Solution
\(V\) \(=Ah\)
  \(=\Big(\dfrac{1}{2}\times 3.1\times 5.2\Big)\times 12.7\)
  \(=8.06\times 12.7\)
  \(=102.362\ \text{cm}^3\)

Filed Under: Prisms Tagged With: num-title-ct-core, smc-4980-10-Triangular

Volume, SM-Bank 061

Calculate the volume of the triangular prism below in cubic metres.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(105\ \text{m}^3\)

Show Worked Solution
\(V\) \(=Ah\)
  \(=\Big(\dfrac{1}{2}\times 6\times 5\Big)\times 7\)
  \(=15\times 7\)
  \(=105\ \text{m}^3\)

Filed Under: Prisms Tagged With: num-title-ct-core, smc-4980-10-Triangular

Volume, SM-Bank 031 MC

A timber door wedge is pictured below.
 

The wedge is in the shape of a triangular prism.

What is the volume of the wedge in cubic centimetres?

  1. \(7.5\ \text{cm}^3\)
  2. \(37.5\ \text{cm}^3\)
  3. \(75\ \text{cm}^3\)
  4. \(375\ \text{cm}^3\)
Show Answers Only

\(B\)

Show Worked Solution

\(\text{10 mm =1 cm}\)

\(\text{Volume}\) \(=Ah\)
  \(=\bigg(\dfrac{1}{2}\times 10\times 3\bigg)\times 2.5\)
  \(=15\times 2.5\)
  \(=37.5\ \text{cm}^3\)

 
\(\Rightarrow\ B\)

Filed Under: Prisms Tagged With: num-title-ct-core, smc-4980-10-Triangular

Volume, SM-Bank 030 MC

A wheelchair ramp is pictured below.
  

 
The ramp is in the shape of a triangular prism.

What is the volume of the ramp?

  1. \(2.8\ \text{m}^3\)
  2. \(5.6\ \text{m}^3\)
  3. \(0.28\ \text{m}^3\)
  4. \(0.56\ \text{m}^3\)
Show Answers Only

\(A\)

Show Worked Solution
\(\text{Volume}\) \(=Ah\)
  \(=(\dfrac{1}{2}\times 7\times 0.4)\times 2\)
  \(=1.4\times 2\)
  \(=2.8\ \text{m}^3\)

 
\(\Rightarrow\ A\)

Filed Under: Prisms Tagged With: num-title-ct-core, smc-4980-10-Triangular

Volume, SM-Bank 010

A rectangular block of land has width 50 metres and length 85 metres.

In order to build a house, the builders dig a hole in the block of land.

The hole has the shape of a right-triangular prism,  \(ABCDEF\).

The width \(AD\) = 20 m, length \(DC\) = 25 m and height \(EC\) = 4 m are shown in the diagram below.
 

Calculate the volume of the right-triangular prism, \(ABCDEF\), giving your answer in cubic metres.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(1000\ \text{m}^3\)

Show Worked Solution

\(\text{Cross-section is a triangle}\)

\(A\) \(=\dfrac{1}{2}\times bh\)
  \(=\dfrac{1}{2}\times 25\times 4\)
  \(= 50\ \text{m}^2\)

 

\(\therefore\ V\) \(=50\times 20\)
  \(=1000\ \text{m}^3\)

Filed Under: Prisms Tagged With: num-title-ct-core, smc-4980-10-Triangular

Volume, SM-Bank 002 MC

A right triangular prism has a volume of 320 cm3.

A second right triangular prism is made with the same width, twice the height and three times the length of the prism shown.

The volume of the second prism (in cm3) is

  1. \(640\)
  2. \(960\)
  3. \(1280\)
  4. \(1920\)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Volume of existing prism}\ (V)\)

\(=A\times l\)
\(=\Bigg(\dfrac{1}{2}\times b\times h\Bigg)\times l\)
\(=320\ \text{cm}^3\)

 

\(\text{Volume of new prism}\ (V_1)\)

\(=\Bigg(\dfrac{1}{2}\times b\times 2h\Bigg)\times 3l\)
\(=6\times\dfrac{1}{2}\times b\times h\times l\)
\(=6\times V\)
\(=6\times 320\)
\(=1920 \ \text{cm}^3\)

 
\(\Rightarrow D\)

Filed Under: Prisms Tagged With: num-title-ct-core, smc-4980-10-Triangular

Copyright © 2014–2025 SmarterEd.com.au · Log in