SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Volume, SM-Bank 065

  1. Given the triangular face of the prism above is isosceles, use Pythagoras' Theorem to calculate its perpendicular height. Give your answer correct to the nearest whole centimetre.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Using your answer from (a), calculate the volume of the prism in cubic centimetres.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(7\ \text{cm}\)

b.    \(168\ \text{cm}^3\)

Show Worked Solution
a.    \(a^2+b^2\) \(=c^2\)
  \(a^2+3^2\) \(=7.6^2\)
  \(a^2\) \(=7.6^2-3^2\)
  \(a^2\) \(=48.76\)
  \(a\) \(=\sqrt{48.76}=6.982\dots\)
  \(a\) \(\approx 7\)

 
\(\therefore\ \text{The perpendicular height of the triangle is }7\ \text{cm, (nearest whole centimetre).}\)
 

b.    \(V\) \(=Ah\)
    \(=\Big(\dfrac{1}{2}\times 6\times 7\Big)\times 8\)
    \(=21\times 8\)
    \(=168\ \text{cm}^3\)

Filed Under: Prisms Tagged With: num-title-ct-core, smc-4980-10-Triangular

Copyright © 2014–2025 SmarterEd.com.au · Log in