SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Volume, SM-Bank 066

Gavin is going camping in the summer holidays and purchased the two-person tent shown below.

  1. Given the triangular face of the tent is isosceles, use Pythagoras' Theorem to calculate the perpendicular height of the tent.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Using your answer from (a), calculate the volume of the tent in cubic metres.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. What is the capacity of the tent in litres?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\ \text{m}\)

b.    \(12 \text{m}^3\)

c.    \(12\ 000\ \text{L}\)

Show Worked Solution
a.    \(a^2+b^2\) \(=c^2\)
  \(x^2+1.5^2\) \(=2.5^2\)
  \(x^2\) \(=2.5^2-1.5^2\)
  \(x^2\) \(=4\)
  \(x\) \(=\sqrt{4}=2\)

 
\(\therefore\ \text{The perpendicular height of the tent is }2\ \text{metres.}\)
 

b.    \(V\) \(=Ah\)
    \(=\Big(\dfrac{1}{2}\times 3\times 2\Big)\times 4\)
    \(=3\times 4\)
    \(=12\ \text{m}^3\)

 

c.    \(1\ \text{m}^3\) \(=1000\ \text{L}\)
  \(\therefore\ 12\ \text{m}^3\) \(=12\ 000\ \text{L}\)

  
\(\therefore\ \text{The capacity of the tent is }12\ 000\ \text{litres.}\)

Filed Under: Prisms Tagged With: num-title-ct-core, smc-4980-10-Triangular, smc-4980-70-Capacity

Copyright © 2014–2025 SmarterEd.com.au · Log in