SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, 2ADV EQ-Bank 1 MC

Which of the following piecewise functions is not continuous at  \(x =1\) ?

  1. \(f(x)= \begin{cases}x^2+1, & \text{for } \ x \leq 1 \\ 3 x-1, & \text{for } x>1\end{cases}\)
  2. \(f(x)= \begin{cases}2 x, & \text{for } \ x<1 \\ x+1, & \text{for } x \geq 1\end{cases}\)
  3. \(f(x)= \begin{cases}-x^2, & \text{for }\ x \leq 1 \\ 2 x-1, & \text{for } x>1\end{cases}\)
  4. \(f(x)= \begin{cases}3-x, & \text{for } \ x<1 \\ x^2+1, & \text{for } x \geq 1\end{cases}\)
Show Answers Only

\(C\)

Show Worked Solution

\(\text {Consider option }C:\)

\(\text{As} \ \ x \rightarrow 1^{-},-x^2 \rightarrow-1\)

\(\text{As} \ \ x \rightarrow 1^{+}, 2 x-1 \rightarrow 1\)

\(\therefore \ \text {Not continuous at} \ \ x=1\)

\(\Rightarrow C\)

Filed Under: Piecewise Functions Tagged With: Band 3, smc-6217-40-Continuity, syllabus-2027

Copyright © 2014–2026 SmarterEd.com.au · Log in