Which of the following piecewise functions is not continuous at \(x =1\) ?
- \(f(x)= \begin{cases}x^2+1, & \text{for } \ x \leq 1 \\ 3 x-1, & \text{for } x>1\end{cases}\)
- \(f(x)= \begin{cases}2 x, & \text{for } \ x<1 \\ x+1, & \text{for } x \geq 1\end{cases}\)
- \(f(x)= \begin{cases}-x^2, & \text{for }\ x \leq 1 \\ 2 x-1, & \text{for } x>1\end{cases}\)
- \(f(x)= \begin{cases}3-x, & \text{for } \ x<1 \\ x^2+1, & \text{for } x \geq 1\end{cases}\)