SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, EXT1 EQ-Bank 3 MC

For which values of \(x\) is  \((2x^2-3x-5)(x+2)<0\) ?

  1. \(x \in(-1,-2) \ \cup\  x \in\left(\dfrac{5}{2}, \infty\right]\)
  2. \(x \in[-\infty,-2)\  \cup\  x \in\left(-1, \dfrac{5}{2}\right)\)
  3. \(x \in(-1,-2)\  \cup\  x \in\left(\dfrac{5}{2}, \infty\right)\)
  4. \(x \in(-\infty,-2)\  \cup\  x \in\left(-1, \dfrac{5}{2}\right)\)
Show Answers Only

\(D\)

Show Worked Solution

\((2x^2-3x-5)(x+2)=(2x-5)(x+1)(x+2) \)

\(\text {Zeros at} \ \ x=\dfrac{5}{2}, \ x=-1,\ \ \text {and} \ \ x=-2\)

\(\text{At} \ \ x=0: \ (-5)(1)(2)<0\)
 

\(\therefore \ \text{Graph }<0\ \text{ for }\ x \in(-\infty,-2)\  \cup\  x \in\left(-1, \frac{5}{2}\right) \)

\(\Rightarrow D\)

Filed Under: Inequalities Tagged With: Band 4, smc-6643-05-Cubics, syllabus-2027

Copyright © 2014–2026 SmarterEd.com.au · Log in