SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, 2ADV EQ-Bank 4

Consider the function  \(g(x)=-\dfrac{12}{x}\)

  1. Is \(g(x)\) an odd or even function? Give reason(s) for your answer.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Sketch the graph \(y=g(x)\) in the domain \(-6 \leq x \leq 6\). Label the endpoints and two other points on the curve.   (2 marks)

    --- 10 WORK AREA LINES (style=blank) ---

Show Answers Only

a.    \(\text{If}\ g(x)\ \text{is odd}\ \ \Rightarrow \ \ g(-x)=-g(x)\)

\(-g(x)= \dfrac{12}{x}\)

\(g(-x) = -\dfrac{12}{(-x)} = \dfrac{12}{x} = -g(x)\)

\(\therefore g(x)\ \text{is odd (and cannot be even).}\)
 

b.    \(\text{Table of values:}\)

\begin{array}{|c|c|c|c|c|c|}
\hline \rule{0pt}{2.5ex}\ \ x \ \ \rule[-1ex]{0pt}{0pt}& -4 & -2 & \ \ 0 \ \ & 2 & 4 \\
\hline \rule{0pt}{2.5ex}y \rule[-1ex]{0pt}{0pt}& 3 & 6 & \infty & -6 & -3 \\
\hline
\end{array}

\(\text{Endpoints:}\ (-6,2), (6,-2) \)
 

Show Worked Solution

a.    \(\text{If}\ g(x)\ \text{is odd}\ \ \Rightarrow \ \ g(-x)=-g(x)\)

\(-g(x)= \dfrac{12}{x}\)

\(g(-x) = -\dfrac{12}{(-x)} = \dfrac{12}{x} = -g(x)\)

\(\therefore g(x)\ \text{is odd.}\)
 

b.    \(\text{Table of values:}\)

\begin{array}{|c|c|c|c|c|c|}
\hline \rule{0pt}{2.5ex}\ \ x \ \ \rule[-1ex]{0pt}{0pt}& -4 & -2 & \ \ 0 \ \ & 2 & 4 \\
\hline \rule{0pt}{2.5ex}y \rule[-1ex]{0pt}{0pt}& 3 & 6 & \infty & -6 & -3 \\
\hline
\end{array}

\(\text{Endpoints:}\ (-6,2), (6,-2) \)
 

Filed Under: Other Functions and Relations Tagged With: Band 3, Band 4, smc-6218-30-Reciprocal

Copyright © 2014–2026 SmarterEd.com.au · Log in