SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, 2ADV EQ-Bank 09

Using the discriminant, or otherwise, justify why the graph of  \(f(x)=-x^2+2 x-2\)  lies entirely below the \(x\)-axis.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\Delta=b^2-4 a c=2^2-4(-1)(-2)=-4\)

\(\text{Since \(\ \Delta<0, \ y=-x^2+2 x-2\ \) does not intersect the \(x\)-axis.}\)

\(\text{Since \(\ a=-1<0, f(x)\) is an upside down parabola.}\)

\(\Rightarrow f(x)\ \text{must lie entirely below} \ x\text{-axis.}\)

Show Worked Solution

\(\Delta=b^2-4 a c=2^2-4(-1)(-2)=-4\)

\(\text{Since \(\ \Delta<0, \ y=-x^2+2 x-2\ \) does not intersect the \(x\)-axis.}\)

\(\text{Since \(\ a=-1<0, f(x)\) is an upside down parabola.}\)

\(\Rightarrow f(x)\ \text{must lie entirely below} \ x\text{-axis.}\)

Filed Under: Quadratics and Cubic Functions (Adv-2027) Tagged With: Band 4, smc-6215-10-Quadratics, smc-6215-80-Discriminant

Copyright © 2014–2025 SmarterEd.com.au · Log in