SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C4 EQ-Bank 1

  1. Differentiate  \(y=x e^x\).   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, find \(\displaystyle \int_1^e x e^x d x\).   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.  \(\dfrac{d y}{d x}=e^x+x e^x\)

b.  \(e^e(e-1)\)

Show Worked Solution

a.    \(y=x e^x\)

\(\dfrac{d y}{d x}=e^x+x e^x\)
 

b.    \(\text{Using part a.}\)

\(\displaystyle\int e^x+x e^x\, d x\) \(=x e^x+c\)
\(\displaystyle\int_1^e e^x\, d x+\int_1^e x e^x\, d x\) \(=\left[x e^x\right]_1^e\)
\(\displaystyle\int_1^e x e^x\, d x\) \(=\left[x e^x\right]_1^e-\left[e^x\right]_1^e\)
  \(=\left[e \cdot e^e-e\right]-\left[e^e-e\right]\)
  \(=e \cdot e^e-e^e\)
  \(=e^e(e-1)\)

Filed Under: L&E Integration (Adv-X) Tagged With: Band 4, Band 5, smc-1203-50-Diff then Integrate

Copyright © 2014–2025 SmarterEd.com.au · Log in