SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

HMS, BM EQ-Bank 350

Analyse the relationship between lactate levels and other immediate physiological responses during high-intensity interval training (HIIT).   (8 marks)

--- 14 WORK AREA LINES (style=lined) ---

Show Answers Only

Sample Answer 

  • During HIIT, lactate levels increase rapidly during high-intensity intervals as the body relies heavily on glycolytic energy systems, causing an accumulation of lactate in the muscles and bloodstream
  • Heart rate increases proportionally with exercise intensity, with a correlation between elevated heart rate and increased lactate production during high-intensity intervals
  • Ventilation rate (breathing rate) increases to expel carbon dioxide and supply more oxygen, with rapid breathing during intense exercise periods coinciding with rising lactate levels
  • Stroke volume initially increases but may plateau or slightly decrease during very high-intensity intervals when lactate levels are at their highest
  • Cardiac output increases to deliver more oxygen to working muscles and help remove lactate, showing a direct relationship with rising lactate concentrations
  • Recovery intervals allow partial clearance of lactate as the body returns toward homeostasis, demonstrating the dynamic relationship between work and recovery periods
  • For example, a soccer player performing sprint intervals would experience rapid increases in lactate levels, heart rate, and ventilation during sprints, with partial recovery during rest periods
Show Worked Solution

Sample Answer 

  • During HIIT, lactate levels increase rapidly during high-intensity intervals as the body relies heavily on glycolytic energy systems, causing an accumulation of lactate in the muscles and bloodstream
  • Heart rate increases proportionally with exercise intensity, with a correlation between elevated heart rate and increased lactate production during high-intensity intervals
  • Ventilation rate (breathing rate) increases to expel carbon dioxide and supply more oxygen, with rapid breathing during intense exercise periods coinciding with rising lactate levels
  • Stroke volume initially increases but may plateau or slightly decrease during very high-intensity intervals when lactate levels are at their highest
  • Cardiac output increases to deliver more oxygen to working muscles and help remove lactate, showing a direct relationship with rising lactate concentrations
  • Recovery intervals allow partial clearance of lactate as the body returns toward homeostasis, demonstrating the dynamic relationship between work and recovery periods
  • For example, a soccer player performing sprint intervals would experience rapid increases in lactate levels, heart rate, and ventilation during sprints, with partial recovery during rest periods

Filed Under: Responses to training (EO-X) Tagged With: Band 4, Band 5, smc-5532-08-Heart rate, smc-5532-10-Stroke volume, smc-5532-12-Ventilation rate, smc-5532-15-Cardiac output, smc-5532-17-Lactate levels

Copyright © 2014–2025 SmarterEd.com.au · Log in