Explain how the biomechanical principles of force and fluid mechanics interrelate with the musculoskeletal system to enable safe diving entry into water. (5 marks)
--- 15 WORK AREA LINES (style=lined) ---
Show Answers Only
Sample Answer
- The musculoskeletal system generates force through coordinated muscle contractions in legs and core during springboard compression. The reason for this is that muscles work in sequence from larger leg muscles to smaller stabilisers. Such sequencing creates optimal force transfer through aligned joints for maximum upward propulsion.
- Joint angles at takeoff directly influence force direction and body trajectory. Consequently, properly flexed knees and extended ankles enable force to travel through the skeletal system efficiently. At a deeper level, correct alignment produces the parabolic flight path needed for safe entry angles.
- During flight, core muscles maintain rigid body alignment to prepare for water entry. More specifically, muscular tension transforms the body into a streamlined projectile. In turn, streamlining reduces surface area contacting water and minimises impact forces through fluid dynamics principles.
- Arms positioned overhead with biceps covering ears create a wedge shape for initial water penetration. It functions through allowing hands to break water surface tension first. Following this, the wedge generates a cavity for the body to follow, which significantly reduces deceleration forces on spine and joints.
- The musculoskeletal system absorbs remaining impact forces through controlled muscle tension and joint positioning. Hence, slightly flexed joints and engaged muscles distribute forces throughout the body rather than concentrating them. To put it simply, force distribution prevents injury while maintaining the streamlined position essential for safe entry.
Show Worked Solution
Sample Answer
- The musculoskeletal system generates force through coordinated muscle contractions in legs and core during springboard compression. The reason for this is that muscles work in sequence from larger leg muscles to smaller stabilisers. Such sequencing creates optimal force transfer through aligned joints for maximum upward propulsion.
- Joint angles at takeoff directly influence force direction and body trajectory. Consequently, properly flexed knees and extended ankles enable force to travel through the skeletal system efficiently. At a deeper level, correct alignment produces the parabolic flight path needed for safe entry angles.
- During flight, core muscles maintain rigid body alignment to prepare for water entry. More specifically, muscular tension transforms the body into a streamlined projectile. In turn, streamlining reduces surface area contacting water and minimises impact forces through fluid dynamics principles.
- Arms positioned overhead with biceps covering ears create a wedge shape for initial water penetration. It functions through allowing hands to break water surface tension first. Following this, the wedge generates a cavity for the body to follow, which significantly reduces deceleration forces on spine and joints.
- The musculoskeletal system absorbs remaining impact forces through controlled muscle tension and joint positioning. Hence, slightly flexed joints and engaged muscles distribute forces throughout the body rather than concentrating them. To put it simply, force distribution prevents injury while maintaining the streamlined position essential for safe entry.