SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

HMS, BM EQ-Bank 844

Using your knowledge of fluid mechanics, evaluate how a competitive swimmer can apply biomechanical principles to enhance movement efficiency and performance.

In your answer, refer to drag, buoyancy, and the interrelationship between body systems.   (8 marks)

--- 22 WORK AREA LINES (style=lined) ---

Show Answers Only

Sample Answer

Evaluation Statement

  • Biomechanical principles prove highly effective for enhancing swimming efficiency when properly applied.
  • Evaluation criteria include drag reduction effectiveness, buoyancy management success, and body system coordination.

Drag Reduction Effectiveness

  • Streamlined body position strongly meets the criteria for reducing resistance by aligning body segments horizontally.
  • Abdominal muscle engagement effectively maintains hip elevation, preventing legs from dropping and creating drag.
  • The interrelationship between deltoids, latissimus dorsi and core muscles optimally produces a rigid streamlined shape.
  • Sculling hand position with slight finger separation successfully generates lift forces while minimising drag.
  • Evidence shows technique refinement substantially reduces energy expenditure per stroke cycle.
  • However, maintaining optimal position proves challenging as fatigue affects muscular endurance and coordination.

Buoyancy Management and Body Systems

  • Centre of buoyancy control through diaphragm regulation adequately fulfils flotation requirements.
  • The respiratory system partially meets dual demands of oxygen supply and buoyancy control.
  • Coordination between breathing patterns and stroke mechanics effectively preserves body position.
  • Individual variations in muscle-to-fat ratio significantly impact natural buoyancy levels.
  • The skeletal system’s leverage points at shoulders and hips enable efficient rotation without compromising flotation.
  • While generally effective, swimmers with denser muscle mass face considerable buoyancy challenges.

Final Evaluation

  • Biomechanical principles prove highly effective when muscles, bones and joints work synergistically.
  • Drag reduction through body positioning shows strongest performance benefits.
  • Although individual body composition affects buoyancy, proper technique substantially compensates.
  • The interrelationship between body systems demonstrates superior efficiency gains.
  • Therefore, mastering fluid mechanics through coordinated body systems remains essential for competitive excellence.
Show Worked Solution

Sample Answer

Evaluation Statement

  • Biomechanical principles prove highly effective for enhancing swimming efficiency when properly applied.
  • Evaluation criteria include drag reduction effectiveness, buoyancy management success, and body system coordination.

Drag Reduction Effectiveness

  • Streamlined body position strongly meets the criteria for reducing resistance by aligning body segments horizontally.
  • Abdominal muscle engagement effectively maintains hip elevation, preventing legs from dropping and creating drag.
  • The interrelationship between deltoids, latissimus dorsi and core muscles optimally produces a rigid streamlined shape.
  • Sculling hand position with slight finger separation successfully generates lift forces while minimising drag.
  • Evidence shows technique refinement substantially reduces energy expenditure per stroke cycle.
  • However, maintaining optimal position proves challenging as fatigue affects muscular endurance and coordination.

Buoyancy Management and Body Systems

  • Centre of buoyancy control through diaphragm regulation adequately fulfils flotation requirements.
  • The respiratory system partially meets dual demands of oxygen supply and buoyancy control.
  • Coordination between breathing patterns and stroke mechanics effectively preserves body position.
  • Individual variations in muscle-to-fat ratio significantly impact natural buoyancy levels.
  • The skeletal system’s leverage points at shoulders and hips enable efficient rotation without compromising flotation.
  • While generally effective, swimmers with denser muscle mass face considerable buoyancy challenges.

Final Evaluation

  • Biomechanical principles prove highly effective when muscles, bones and joints work synergistically.
  • Drag reduction through body positioning shows strongest performance benefits.
  • Although individual body composition affects buoyancy, proper technique substantially compensates.
  • The interrelationship between body systems demonstrates superior efficiency gains.
  • Therefore, mastering fluid mechanics through coordinated body systems remains essential for competitive excellence.

Filed Under: Fluid Mechanics and Force Tagged With: Band 5, Band 6, smc-5879-10-Flotation/Centre of Buoyancy, smc-5879-20-Fluid resistance

Copyright © 2014–2025 SmarterEd.com.au · Log in