Solve `4-x/2<=5` if `x` is a negative number.
Graph your solution on a number line. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Solve `4-x<7`. (2 marks)
`x> -3`
`4-x` | `<7` | |
`-x` | `< 3` | |
`x` | `> -3` |
Solve `3-x/5<8` if `x` is a negative number. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`-25>x<=0`
`3-x/5` | `<8` | |
`-x/5` | `< 5` | |
`-x` | `<25` | |
`x` | `> -25` |
`text{Given}\ x\ text{is a negative number:}`
`-25>x<=0`
Solve `2x+1>= -3` and graph the solution on a number line. (3 marks)
`x>= -2`
`2x+1` | `>= -3` | |
`2x` | `>= -4` | |
`x` | `>= -2` |
In this inequality `n` is a whole number.
`8/n < 5/8`
What is the smallest possible value for `n` to make this inequality true? (2 marks)
`13`
`8/n` | `< 5/8` |
`5n` | `> 64` |
`n` | `> 64/5` |
`> 12.8` |
`:. text(Smallest)\ \ n = 13.`
For the expression `x^2 > 5x`, what is the smallest positive whole number `x` can be that makes the expression correct? (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`6`
`text(If)\ \ x = 6,`
`6^2` | `> 5 xx 6` |
`36` | `> 30\ \ \ =>\ text{correct}` |
`text(All positive whole numbers smaller than 6 result in:)`
`x^2 = 5x\ \ \ text{(for}\ x=5 text{)}`
`x^2 < 5x\ \ \ text{(for}\ x=4,3,2, …text{)}`
`4/45 = 3/40 + 1/x`
Find the value of `x?` (2 marks)
`72`
`1/x` | `= 4/45-3/40` |
`= 1/72\ \ \ text{(by calculator)}` | |
`:. x` | `= 72` |
The weight (`w` kilograms) and age (`a` years) of a turtle are related by the following inequality:
\begin{array} {|l|}
\hline
\rule{0pt}{2.5ex}w < 8a-13\ \ \text{for all values of}\ a\ \text{between 1 and 10}\rule[-1ex]{0pt}{0pt} \\
\hline
\end{array}
Which pair of values satisfy this inequality?
`C`
`text(Test each option by trial and error.)`
`text(Consider)\ \ w = 18,\ a = 4,`
`18 < 8 xx 4-13`
`18 < 19\ \ text{(correct)}`
`:. w = 18,\ a = 4\ text(satisfies the equation).`
`=>C`
`2/13 < 3/x` where `x` is a positive whole number.
What is the highest possible value for `x`? (2 marks)
`19`
`2/13` | `< 3/x` |
`2x` | `< 39` |
`x` | `< 19.5` |
`:. x = 19`
Solve `3-5x <= 2`. (2 marks)
`x >= 1/5`
`3-5x` | `<= 2` |
`-5x` | `<= -1` |
`x` | `>= 1/5` |
Solve `3/(x+2) < 4`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x < -2\ \ text(or)\ \ x > -5/4`
`text(Solution 1)`
`3/(x + 2) < 4`
`text(Multiply b.s. by)\ \ (x + 2)^2`
`3(x + 2)` | `< 4(x + 2)^2` |
`3x + 6` | `< 4 (x^2 + 4x + 4)` |
`3x + 6` | `< 4x^2 + 16x + 16` |
`4x^2 + 13x + 10` | `> 0` |
`(4x + 5)(x + 2)` | `> 0` |
`text(LHS)\ = 0\ \ text(when)\ \ x = -5/4\ \ text(or)\ \ -2`
`text(From graph)`
`x < -2\ \ text(or)\ \ x > -5/4`
`text(Alternate Solution)`
`text(If)\ \ x + 2 > 0\ \ \ \ text{(i.e.}\ \ x > –2 text{)}`
`3` | `< 4(x + 2)` |
`3` | `< 4x + 8` |
`4x` | `> -5` |
`x` | `> -5/4` |
`text(If)\ \ x + 2 < 0\ \ \ \ text{(i.e.}\ x < –2 text{)}`
`3` | `> 4 (x + 2)` |
`3` | `> 4x + 8` |
`4x` | `< -5` |
`x` | `< -5/4` |
`:. x` | `< –2\ \ \ \ text{(satisfies both)}` |
`:.\ x < –2\ \ text(or)\ \ x > –5/4`
Solve `(4-x)/x <1`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x<0\ \ text(or)\ \ x>2`
`text(Solution 1)`
`(4-x)/x < 1`
`text(If)\ x<0,\ \ \ \ \ 4-x` | `> x` |
`2x` | `< 4` |
`x` | `<2` |
`=> x<0\ \ \ text{(satisfies both)}`
`text(If)\ x>0,\ \ \ \ \ 4-x` | `<x` |
`2x` | `>4` |
`x` | `>2` |
`=> x>2\ \ \ text{(satisfies both)}`
`:.\ x < 0\ \ text(or)\ \ x > 2`
`text(Solution 2)`
`text(Multiply both sides by)\ \ x^2`
`x(4-x)` | `< x^2` |
`4x-x^2` | `< x^2` |
`2x^2-4x` | `>0` |
`2x(x-2)` | `>0` |
`text(From graph)`
`x<0\ \ text(or)\ \ x >2`